Microcrystalline cellulose reinforced polylactic acid biocomposite filaments for 3D printing

被引:165
|
作者
Murphy, Caroline A. [1 ]
Collins, Maurice N. [2 ]
机构
[1] Univ Limerick, Dept Civil Engn & Mat Sci, Limerick, Ireland
[2] Univ Limerick, Stokes Labs, Limerick, Ireland
关键词
THERMAL-PROPERTIES; MICROFIBRILLATED CELLULOSE; SURFACE MODIFICATION; POLY(LACTIC ACID); COMPOSITES; NANOFIBERS; PLA; FIBERS; BIONANOCOMPOSITES; MORPHOLOGY;
D O I
10.1002/pc.24069
中图分类号
TB33 [复合材料];
学科分类号
摘要
The aim of this study was to produce a novel microcrystalline cellulose (MCC) reinforced polylactic acid (PLA), fully degradable biocomposites for 3D printing applications. The biocomposites were produced in filament form by solvent casting and twin screw extrusion to achieve final concentrations of 1, 3, and 5 wt% of cellulose. In order to improve compatibility with the PLA, the cellulose was surface-modified using a titanate coupling agent. Influence of cellulose content and modification on the morphological, mechanical, and thermal properties of the biocomposites were studied. Differential scanning calorimetry results reveal an increase in crystallinity for all biocomposites, with 3 wt% surface-modified cellulose displaying highest values. Dynamic mechanical thermal analysis results show that storage modulus increased for all biocomposites when compared with neat PLA, with the most significant increase associated with the 3 wt% modified cellulose. The surface modification of cellulose shifted the tan delta peak of the 1 and 3 wt% biocomposite toward lower temperatures, indicating an increased mobility of the PLA chains. Finally, the extruded cellulose reinforced PLA filaments were successfully 3D printed using a fused deposition modeling technique. POLYM. COMPOS., 39:1311-1320, 2018. (c) 2016 Society of Plastics Engineers
引用
收藏
页码:1311 / 1320
页数:10
相关论文
共 50 条
  • [31] Fabrication of halochromic polylactic acid filament for 3D Printing
    Chan, Q.H.
    Zamri, M.Z.
    Rusli, A.
    Hamid, Z.A.A.
    Abdullah, M.K.
    Syafiq, M.D.
    Ku Marsilla, K.I.
    [J]. Materials Today: Proceedings, 2023, 74 : 524 - 527
  • [32] In Situ Printing of Polylactic Acid/Nanoceramic Filaments for the Repair of Bone Defects Using a Portable 3D Device
    Brito, Guilherme Castro
    Sousa, Gustavo Fernandes
    Santana, Moises Virgens
    Furtado, Andre Sales Aguiar
    Silva, Millena de Cassia Sousa E.
    Verde, Thiago Ferreira Candido Lima
    Barbosa, Renata
    Alves, Tatianny Soares
    Vasconcellos, Luana Marotta Reis
    Silva, Leonardo Alvares Sobral
    Viana, Vicente Galber Freitas
    Figueredo-Silva, Jose
    Filho, Antonio Luiz Martins Maia
    Marciano, Fernanda Roberta
    Lobo, Anderson Oliveira
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2024,
  • [33] Research progress in polylactic acid processing for 3D printing
    Wang, Xiyue
    Huang, Lijie
    Li, Yishan
    Wang, Yanan
    Lu, Xuyang
    Wei, Zhehao
    Mo, Qi
    Zhang, Shuya
    Sheng, Yao
    Huang, Chongxing
    Zhao, Hui
    Liu, Yang
    [J]. JOURNAL OF MANUFACTURING PROCESSES, 2024, 112 : 161 - 178
  • [34] 3D printing of polylactic acid: recent advances and opportunities
    Tomy Muringayil Joseph
    Anoop Kallingal
    Akshay Maniyeri Suresh
    Debarshi Kar Mahapatra
    Mohamed S. Hasanin
    Józef Haponiuk
    Sabu Thomas
    [J]. The International Journal of Advanced Manufacturing Technology, 2023, 125 : 1015 - 1035
  • [35] Polylactic Acid Polymer Matrix (Pla) Biocomposites with Plant Fibers for Manufacturing 3D Printing Filaments: A Review
    Almeida, Victor Hugo M.
    Jesus, Raildo M.
    Santana, Gregorio M.
    Pereira, Thais B.
    [J]. JOURNAL OF COMPOSITES SCIENCE, 2024, 8 (02):
  • [36] Fabrication and Properties of Wood-Polylactic Acid Composite Filaments for Fused Deposition Modeling 3D Printing
    Lin, Po-Heng
    Ho, Chen-Lung
    Lin, Cheng-Jung
    Tu, San-Hsien
    [J]. Taiwan Journal of Forest Science, 2022, 37 (03): : 167 - 178
  • [37] Variability in the inorganic composition of colored acrylonitrile–butadiene–styrene and polylactic acid filaments used in 3D printing
    Derek M. Peloquin
    Logan N. Rand
    Eric J. Baumann
    Ali Gitipour
    Joanna Matheson
    Todd P. Luxton
    [J]. SN Applied Sciences, 2023, 5
  • [38] Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose
    Haafiz, M. K. Mohamad
    Hassan, Azman
    Zakaria, Zainoha
    Inuwa, I. M.
    Islam, M. S.
    Jawaid, M.
    [J]. CARBOHYDRATE POLYMERS, 2013, 98 (01) : 139 - 145
  • [39] Mechanical and thermal properties of bamboo fiber reinforced polypropylene/polylactic acid composites for 3D printing
    Long, Haibo
    Wu, Zhiqiang
    Dong, Qianqian
    Shen, Yuting
    Zhou, Wuyi
    Luo, Ying
    Zhang, Chaoqun
    Dong, Xianming
    [J]. POLYMER ENGINEERING AND SCIENCE, 2019, 59 (s2): : E247 - E260
  • [40] Study on 3D printing process of continuous polyglycolic acid fiber-reinforced polylactic acid degradable composites
    Aihemaiti, Patiguli
    Jia, Ru
    Aiyiti, Wurikaixi
    Jiang, Houfeng
    Kasimu, Ayiguli
    [J]. INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (04)