Study on 3D printing process of continuous polyglycolic acid fiber-reinforced polylactic acid degradable composites

被引:4
|
作者
Aihemaiti, Patiguli [1 ]
Jia, Ru [1 ]
Aiyiti, Wurikaixi [1 ]
Jiang, Houfeng [1 ]
Kasimu, Ayiguli [1 ]
机构
[1] Xinjiang Univ, Sch Mech Engn, Urumqi 830000, Peoples R China
关键词
3D printing; Continuous fiber-reinforced composites; Biodegradable implants; Mechanical properties; TITANIUM; IMPLANTS;
D O I
10.18063/ijb.734
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A continuous polyglycolic acid (PGA) fiber-reinforced polylactic acid (PLA) degradable composite was proposed for application in biodegradable load-bearing bone implant. The fused deposition modeling (FDM) process was used to fabricate composite specimens. The influences of the printing process parameters, such as layer thickness, printing spacing, printing speed, and filament feeding speed on the mechanical properties of the PGA fiber-reinforced PLA composites, were studied. The thermal properties of the PGA fiber and PLA matrix were investigated by using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The internal defects of the as-fabricated specimens were characterized by the micro -X-ray 3D imaging system. During the tensile experiment, a full-field strain measurement system was used to detect the strain map and analysis the fracture mode of the specimens. A digital microscope and field emission electron scanning microscopy were used to observe the interface bonding between fiber and matrix and fracture morphologies of the specimens. The experimental results showed that the tensile strength of specimens was related to their fiber content and porosity. The printing layer thickness and printing spacing had significant impacts on the fiber content. The printing speed did not affect the fiber content but had a slight effect on the tensile strength. Reducing the printing spacing and layer thickness could increase the fiber content. The tensile strength (along the fiber direction) of the specimen with 77.8% fiber content and 1.82% porosity was the highest, reaching 209.32 +/- 8.37 MPa, which is higher than the tensile strength of the cortical bone and polyether ether ketone (PEEK), indicating that the continuous PGA fiber-reinforced PLA composite has great potential in the manufacture of biodegradable load-bearing bone implants.
引用
收藏
页数:1
相关论文
共 50 条
  • [1] Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing
    Li, Nanya
    Li, Yingguang
    Liu, Shuting
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2016, 238 : 218 - 225
  • [2] 3D printing of continuous fiber-reinforced thermoset composites
    He, Xu
    Ding, Yuchen
    Lei, Zepeng
    Welch, Sam
    Zhang, Wei
    Dunn, Martin
    Yu, Kai
    ADDITIVE MANUFACTURING, 2021, 40
  • [3] 3D printing of continuous fiber-reinforced thermoset composites
    He, Xu
    Ding, Yuchen
    Lei, Zepeng
    Welch, Sam
    Zhang, Wei
    Dunn, Martin
    Yu, Kai
    Additive Manufacturing, 2021, 40
  • [4] Process-dependent multiscale modeling for 3D printing of continuous fiber-reinforced composites
    Zhang, Junming
    Yang, Weidong
    Li, Yan
    ADDITIVE MANUFACTURING, 2023, 73
  • [5] 3D printing of fiber-reinforced soft composites: Process study and material characterization
    Spackman, Clayson C.
    Frank, Christopher R.
    Picha, Kyle C.
    Samuel, Johnson
    JOURNAL OF MANUFACTURING PROCESSES, 2016, 23 : 296 - 305
  • [6] Optimization of printing parameters of 3D-printed continuous glass fiber reinforced polylactic acid composites
    Chen, Ke
    Yu, Liguo
    Cui, Yonghui
    Jia, Mingyin
    Pan, Kai
    THIN-WALLED STRUCTURES, 2021, 164
  • [7] Mechanical and thermal properties of bamboo fiber reinforced polypropylene/polylactic acid composites for 3D printing
    Long, Haibo
    Wu, Zhiqiang
    Dong, Qianqian
    Shen, Yuting
    Zhou, Wuyi
    Luo, Ying
    Zhang, Chaoqun
    Dong, Xianming
    POLYMER ENGINEERING AND SCIENCE, 2019, 59 (s2): : E247 - E260
  • [8] Printing process and application progress of 3D printing continuous fiber reinforced composites
    Cao F.
    Zeng Z.
    Huang J.
    Zhang F.
    Qian K.
    Li W.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2023, 53 (11): : 1815 - 1833
  • [9] 3D-Printed Continuous Basalt Fiber-Reinforced Polylactic Acid Composites: Effect of Printing Parameters on Impact and Interlaminar Shear Strength
    Malik, Mayand
    Saxena, Prateek
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2025,
  • [10] Fundamental study of commercial polylactic acid and coconut fiber/polylactic acid filaments for 3D printing
    Alaa, Moustafa
    Abdan, Khalina
    Hao, Lee Ching
    Al-Talib, Ammar
    Huzaifah, Muhammad
    Mazlan, Norkhairunnisa
    PHYSICAL SCIENCES REVIEWS, 2022, : 47 - 62