On the existence of universal covering spaces for metric spaces and subsets of the Euclidean plane

被引:20
|
作者
Conner, GR [1 ]
Lamoreaux, JW [1 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
关键词
planar; free group; fundamental group; covering space; metrizable;
D O I
10.4064/fm187-2-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove several results concerning the existence of universal covering spaces for separable metric spaces. To begin, we define several homotopy-theoretic conditions which we then prove are equivalent to the existence of a universal covering space. We use these equivalences to prove that every connected, locally path connected separable metric space whose fundamental group is a free group admits a universal covering space. As an application of these results, we prove the main result of this article, which states that a connected, locally path connected subset of the Euclidean plane, E-2, admits a universal covering space if and only if its fundamental group is free, if and only if its fundamental group is countable.
引用
收藏
页码:95 / 110
页数:16
相关论文
共 50 条
  • [21] A metric characterization of snowflakes of Euclidean spaces
    Kinneberg, Kyle
    Le Donne, Enrico
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2016, 16 (02) : 469 - 480
  • [22] ON SOME COVERING PROPERTIES OF METRIC SPACES
    DUDA, R
    TELGARSK.R
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 1968, 18 (01) : 66 - &
  • [23] Covering compact metric spaces greedily
    J. H. Rolfes
    F. Vallentin
    [J]. Acta Mathematica Hungarica, 2018, 155 : 130 - 140
  • [24] Covering metric spaces by few trees
    Bartal, Yair
    Fandina, Ora Nova
    Neiman, Ofer
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2022, 130 : 26 - 42
  • [25] Covering compact metric spaces greedily
    Rolfes, J. H.
    Vallentin, F.
    [J]. ACTA MATHEMATICA HUNGARICA, 2018, 155 (01) : 130 - 140
  • [26] MINIMAL UNIVERSAL METRIC SPACES
    Bilet, Victoriia
    Dovgoshey, Oleksiy
    Kucukaslan, Mehmet
    Petrov, Evgenii
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (02) : 1019 - 1064
  • [27] INITIAL AND UNIVERSAL METRIC SPACES
    HOLSZTYNSKI, W
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 58 (JUL) : 306 - 310
  • [28] Random and universal metric spaces
    Vershik, AM
    [J]. DYNAMICS AND RANDOMNESS II, 2004, 10 : 199 - 228
  • [29] Universal approximation on metric spaces
    Jung, Woochul
    Rojas, A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (01)
  • [30] Two observations regarding embedding subsets of Euclidean spaces in normed spaces
    Schechtman, G
    [J]. ADVANCES IN MATHEMATICS, 2006, 200 (01) : 125 - 135