Covering metric spaces by few trees

被引:1
|
作者
Bartal, Yair [1 ]
Fandina, Ora Nova [2 ]
Neiman, Ofer [3 ]
机构
[1] Hebrew Univ Jerusalem, Dept Comp Sci, Jerusalem, Israel
[2] Aarhus Univ, Dept Comp Sci, Aarhus, Denmark
[3] Ben Gurion Univ Negev, Dept Comp Sci, Beer Sheva, Israel
基金
以色列科学基金会;
关键词
Tree covers; Spanners; Metric embedding; CONSTRUCTIONS; DISTORTION; SPANNERS; NETWORK; GRAPHS;
D O I
10.1016/j.jcss.2022.06.001
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A tree cover of a metric space (X, d) is a collection of trees, so that every pair x, y e X has a low distortion path in one of the trees. If it has the stronger property that every point x e X has a single tree with low distortion paths to all other points, we call this a Ramsey tree cover. In this paper we devise efficient algorithms to construct tree covers and Ramsey tree covers for general, planar and doubling metrics. We pay particular attention to the desirable case of distortion close to 1, and study what can be achieved when the number of trees is small. In particular, our work shows a large separation between what can be achieved by tree covers vs. Ramsey tree covers. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:26 / 42
页数:17
相关论文
共 50 条
  • [1] ON SOME COVERING PROPERTIES OF METRIC SPACES
    DUDA, R
    TELGARSK.R
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 1968, 18 (01) : 66 - &
  • [2] Covering compact metric spaces greedily
    J. H. Rolfes
    F. Vallentin
    [J]. Acta Mathematica Hungarica, 2018, 155 : 130 - 140
  • [3] Covering compact metric spaces greedily
    Rolfes, J. H.
    Vallentin, F.
    [J]. ACTA MATHEMATICA HUNGARICA, 2018, 155 (01) : 130 - 140
  • [4] Applications of bornological covering properties in metric spaces
    Chandra, Debraj
    Das, Pratulananda
    Das, Subhankar
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (01): : 43 - 63
  • [5] Remarks On Sequence Covering Images Of Metric Spaces
    Ge, Ying
    [J]. APPLIED MATHEMATICS E-NOTES, 2007, 7 : 60 - 64
  • [6] Global homeomorphisms and covering projections on metric spaces
    Gutu, Olivia
    Jaramillo, Jesus A.
    [J]. MATHEMATISCHE ANNALEN, 2007, 338 (01) : 75 - 95
  • [7] Covering mappings in metric spaces and fixed points
    A. V. Arutyunov
    [J]. Doklady Mathematics, 2007, 76 : 665 - 668
  • [8] Global homeomorphisms and covering projections on metric spaces
    Olivia Gutú
    Jesús A. Jaramillo
    [J]. Mathematische Annalen, 2007, 338
  • [9] VARIOUS COVERING SPECTRA FOR COMPLETE METRIC SPACES
    Sormani, Christina
    Wei, Guofang
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2015, 19 (01) : 171 - 202
  • [10] COMPACT-COVERING IMAGES OF METRIC SPACES
    MICHAEL, E
    NAGAMI, K
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 37 (01) : 260 - 266