Constructive Canonicity for Lattice-Based Fixed Point Logics

被引:10
|
作者
Conradie, Willem [1 ]
Craig, Andrew [1 ]
Palmigiano, Alessandra [1 ,2 ]
Zhao, Zhiguang [2 ]
机构
[1] Univ Johannesburg, Dept Pure & Appl Math, Johannesburg, South Africa
[2] Delft Univ Technol, Fac Technol Policy & Management, Delft, Netherlands
来源
LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION: 24TH INTERNATIONAL WORKSHOP, WOLLIC 2017, LONDON, UK, JULY 18-21, 2017, PROCEEDINGS | 2017年 / 10388卷
基金
新加坡国家研究基金会;
关键词
Canonicity; Lattice-based fixed point logics; Logics for categorization; Unified correspondence; MODAL MU-CALCULUS; ALGORITHMIC CORRESPONDENCE; SAHLQVIST THEORY; COMPLETENESS; PROOF;
D O I
10.1007/978-3-662-55386-2_7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the present paper, we prove canonicity results for lattice-based fixed point logics in a constructive meta-theory. Specifically, we prove two types of canonicity results, depending on how the fixed-point binders are interpreted. These results smoothly unify the constructive canonicity results for inductive inequalities, proved in a general lattice setting, with the canonicity results for fixed point logics on a bi-intuitionistic base, proven in a non-constructive setting.
引用
收藏
页码:92 / 109
页数:18
相关论文
共 50 条
  • [41] Fixed-point logics with nondeterministic choice
    Dawar, A
    Richerby, D
    JOURNAL OF LOGIC AND COMPUTATION, 2003, 13 (04) : 503 - 530
  • [42] On Symmetric Circuits and Fixed-Point Logics
    Anderson, Matthew
    Dawar, Anuj
    31ST INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2014), 2014, 25 : 41 - 52
  • [43] Fixed point logics and definable topological properties
    Fernandez-Duque, David
    Gougeon, Quentin
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2024, 34 (02) : 81 - 97
  • [44] Fixed Point Logics and Definable Topological Properties
    Fernandez-Duque, David
    Gougeon, Quentin
    LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION, WOLLIC 2022, 2022, 13468 : 36 - 52
  • [45] Fixed-point logics and solitaire games
    Berwanger, D
    Grädel, E
    THEORY OF COMPUTING SYSTEMS, 2004, 37 (06) : 675 - 694
  • [46] Modular Games for Coalgebraic Fixed Point Logics
    Cirstea, Corina
    Sadrzadeh, Mehrnoosh
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2008, 203 (05) : 71 - 92
  • [47] Modal logics with fixed-point property
    Sacchetti, L
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1999, 2B (02): : 279 - 290
  • [48] SUPERVALUATION FIXED-POINT LOGICS OF TRUTH
    Philip Kremer
    Alasdair Urquhart
    Journal of Philosophical Logic, 2008, 37 : 407 - 440
  • [49] On Symmetric Circuits and Fixed-Point Logics
    Matthew Anderson
    Anuj Dawar
    Theory of Computing Systems, 2017, 60 : 521 - 551
  • [50] A Lattice-based Model for Recommender Systems
    Narayanaswamy, Shriram
    Bhatnagar, Raj
    20TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, VOL 2, PROCEEDINGS, 2008, : 349 - 356