Constructive Canonicity for Lattice-Based Fixed Point Logics

被引:10
|
作者
Conradie, Willem [1 ]
Craig, Andrew [1 ]
Palmigiano, Alessandra [1 ,2 ]
Zhao, Zhiguang [2 ]
机构
[1] Univ Johannesburg, Dept Pure & Appl Math, Johannesburg, South Africa
[2] Delft Univ Technol, Fac Technol Policy & Management, Delft, Netherlands
来源
LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION: 24TH INTERNATIONAL WORKSHOP, WOLLIC 2017, LONDON, UK, JULY 18-21, 2017, PROCEEDINGS | 2017年 / 10388卷
基金
新加坡国家研究基金会;
关键词
Canonicity; Lattice-based fixed point logics; Logics for categorization; Unified correspondence; MODAL MU-CALCULUS; ALGORITHMIC CORRESPONDENCE; SAHLQVIST THEORY; COMPLETENESS; PROOF;
D O I
10.1007/978-3-662-55386-2_7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the present paper, we prove canonicity results for lattice-based fixed point logics in a constructive meta-theory. Specifically, we prove two types of canonicity results, depending on how the fixed-point binders are interpreted. These results smoothly unify the constructive canonicity results for inductive inequalities, proved in a general lattice setting, with the canonicity results for fixed point logics on a bi-intuitionistic base, proven in a non-constructive setting.
引用
收藏
页码:92 / 109
页数:18
相关论文
共 50 条
  • [31] Lattice-based information retrieval
    Priss, U
    KNOWLEDGE ORGANIZATION, 2000, 27 (03): : 132 - 142
  • [32] Lattice-based PKEs/KEMs
    Xianhui Lu
    Jiang Zhang
    NationalScienceReview, 2021, 8 (09) : 7 - 8
  • [33] Lattice-based digital signatures
    Vadim Lyubashevsky
    National Science Review, 2021, 8 (09) : 9 - 10
  • [34] Fixed-Point Logics and Solitaire Games
    Dietmar Berwanger
    Erich Grädel
    Theory of Computing Systems, 2004, 37 : 675 - 694
  • [35] On Symmetric Circuits and Fixed-Point Logics
    Anderson, Matthew
    Dawar, Anuj
    THEORY OF COMPUTING SYSTEMS, 2017, 60 (03) : 521 - 551
  • [36] COMPLETE PROBLEMS FOR FIXED-POINT LOGICS
    GROHE, M
    JOURNAL OF SYMBOLIC LOGIC, 1995, 60 (02) : 517 - 527
  • [37] Lattice-based lightweight cryptosystem
    Jain, Shivani
    Padmavathy, R.
    INTERNATIONAL JOURNAL OF AD HOC AND UBIQUITOUS COMPUTING, 2022, 41 (03) : 135 - 146
  • [38] Lattice-Based Timed Cryptography
    Lai, Russell W. F.
    Malavolta, Giulio
    ADVANCES IN CRYPTOLOGY - CRYPTO 2023, PT V, 2023, 14085 : 782 - 804
  • [39] Fixed-point logics on planar graphs
    Grohe, M
    THIRTEENTH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 1998, : 6 - 15
  • [40] A Buchholz Rule for Modal Fixed Point Logics
    Jaeger, Gerhard
    Studer, Thomas
    LOGICA UNIVERSALIS, 2011, 5 (01) : 1 - 19