Constructive Canonicity for Lattice-Based Fixed Point Logics
被引:10
|
作者:
论文数: 引用数:
h-index:
机构:
Conradie, Willem
[1
]
Craig, Andrew
论文数: 0引用数: 0
h-index: 0
机构:
Univ Johannesburg, Dept Pure & Appl Math, Johannesburg, South AfricaUniv Johannesburg, Dept Pure & Appl Math, Johannesburg, South Africa
Craig, Andrew
[1
]
Palmigiano, Alessandra
论文数: 0引用数: 0
h-index: 0
机构:
Univ Johannesburg, Dept Pure & Appl Math, Johannesburg, South Africa
Delft Univ Technol, Fac Technol Policy & Management, Delft, NetherlandsUniv Johannesburg, Dept Pure & Appl Math, Johannesburg, South Africa
Palmigiano, Alessandra
[1
,2
]
Zhao, Zhiguang
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, Fac Technol Policy & Management, Delft, NetherlandsUniv Johannesburg, Dept Pure & Appl Math, Johannesburg, South Africa
Zhao, Zhiguang
[2
]
机构:
[1] Univ Johannesburg, Dept Pure & Appl Math, Johannesburg, South Africa
LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION: 24TH INTERNATIONAL WORKSHOP, WOLLIC 2017, LONDON, UK, JULY 18-21, 2017, PROCEEDINGS
|
2017年
/
10388卷
基金:
新加坡国家研究基金会;
关键词:
Canonicity;
Lattice-based fixed point logics;
Logics for categorization;
Unified correspondence;
MODAL MU-CALCULUS;
ALGORITHMIC CORRESPONDENCE;
SAHLQVIST THEORY;
COMPLETENESS;
PROOF;
D O I:
10.1007/978-3-662-55386-2_7
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
In the present paper, we prove canonicity results for lattice-based fixed point logics in a constructive meta-theory. Specifically, we prove two types of canonicity results, depending on how the fixed-point binders are interpreted. These results smoothly unify the constructive canonicity results for inductive inequalities, proved in a general lattice setting, with the canonicity results for fixed point logics on a bi-intuitionistic base, proven in a non-constructive setting.