On the critical values in subset sum

被引:4
|
作者
Fang, Jin-Hui [1 ]
Fang, Zhi-Kai [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
INVERSE PROBLEM;
D O I
10.1016/j.ejc.2020.103158
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a sequence A of positive integers, let P(A) be the set of all integers which can be represented as the finite sum of distinct terms of A. In 2012, Chen and Fang proved that, for a sequence of integers B = {b(1) < b(2) < ...}, if b(1) is an element of {4, 7, 8}boolean OR{b : b >= 11, b is an element of N} and b(n +1) >= 3b(n) + 5 for all n >= 1, then there exists an infinite sequence A of positive integers for which P(A) = N \ B; on the other hand, if b(2) = 3b(1) + 4, then such A does not exist. Recently, for b(2) = 3b(1) + 5, the authors determined the critical value for b(3) such that there exists an infinite sequence A of positive integers for which P(A) = N \ B. In this paper, we fix the exact critical values for the above general terms. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] An exact algorithm for the subset sum problem
    Soma, NY
    Toth, P
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2002, 136 (01) : 57 - 66
  • [32] Approximability of the Subset Sum Reconfiguration Problem
    Ito, Takehiro
    Demaine, Erik D.
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2011, 2011, 6648 : 58 - 69
  • [33] SOME REMARKS ON PROBLEMS OF SUBSET SUM
    Tang, Min
    Xu, Hongwei
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (06) : 1339 - 1348
  • [34] On the expressiveness of subset-sum representations
    Ilie, L
    Salomaa, A
    ACTA INFORMATICA, 2000, 36 (08) : 665 - 672
  • [35] Dense Subset Sum May Be the Hardest
    Austrin, Per
    Kaski, Petteri
    Koivisto, Mikko
    Nederlof, Jesper
    33RD SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2016), 2016, 47
  • [36] An Optical Solution for the Subset Sum Problem
    Hasan, Masud
    Hossain, S. M. Shabab
    Rahman, Md. Mahmudur
    Rahman, M. Sohel
    NATURAL COMPUTING, 2010, 2 : 165 - 173
  • [37] Dynamic Programming for the Subset Sum Problem
    Fujiwara, Hiroshi
    Watari, Hokuto
    Yamamoto, Hiroaki
    FORMALIZED MATHEMATICS, 2020, 28 (01): : 89 - 92
  • [38] The Subset Sum Problem in Keno Modelling
    Sugden, Stephen J.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 526 - 529
  • [39] Subset sum problems with digraph constraints
    Laurent Gourvès
    Jérôme Monnot
    Lydia Tlilane
    Journal of Combinatorial Optimization, 2018, 36 : 937 - 964
  • [40] THE REPRESENTATION OF SOME INTEGERS AS A SUBSET SUM
    HAMIDOUNE, YO
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 : 557 - 563