On the critical values in subset sum

被引:4
|
作者
Fang, Jin-Hui [1 ]
Fang, Zhi-Kai [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
INVERSE PROBLEM;
D O I
10.1016/j.ejc.2020.103158
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a sequence A of positive integers, let P(A) be the set of all integers which can be represented as the finite sum of distinct terms of A. In 2012, Chen and Fang proved that, for a sequence of integers B = {b(1) < b(2) < ...}, if b(1) is an element of {4, 7, 8}boolean OR{b : b >= 11, b is an element of N} and b(n +1) >= 3b(n) + 5 for all n >= 1, then there exists an infinite sequence A of positive integers for which P(A) = N \ B; on the other hand, if b(2) = 3b(1) + 4, then such A does not exist. Recently, for b(2) = 3b(1) + 5, the authors determined the critical value for b(3) such that there exists an infinite sequence A of positive integers for which P(A) = N \ B. In this paper, we fix the exact critical values for the above general terms. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] The equal–sum–free subset problem
    Gábor Bacsó
    Zsolt Tuza
    Acta Scientiarum Mathematicarum, 2020, 86 : 73 - 79
  • [22] On subset-sum-distinct sequences
    Bae, J
    ANALYTIC NUMBER THEORY, VOL 1: PROCEEDINGS OF A CONFERENCE IN HONOR OF HEINI HALBERSTAM, 1996, 138 : 31 - 37
  • [23] On the expressiveness of subset-sum representations
    Lucian Ilie
    Arto Salomaa
    Acta Informatica, 2000, 36 : 665 - 672
  • [24] Structural Approach to Subset Sum Problems
    Endre Szemerédi
    Foundations of Computational Mathematics, 2016, 16 : 1737 - 1749
  • [25] DIRECT SUM SUBSET DECOMPOSITIONS OF Z
    SWENSON, C
    PACIFIC JOURNAL OF MATHEMATICS, 1974, 53 (02) : 629 - 633
  • [26] Subset sum problems with digraph constraints
    Gourves, Laurent
    Monnot, Jerome
    Tlilane, Lydia
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (03) : 937 - 964
  • [27] Subset sum problem in polycyclic groups
    Nikolaev, Andrey
    Ushakov, Alexander
    JOURNAL OF SYMBOLIC COMPUTATION, 2018, 84 : 84 - 94
  • [28] Predicting subset sum pseudorandom generators
    von zur Gathen, J
    Shparlinski, IE
    SELECTED AREAS IN CRYPTOGRAPHY, 2005, 3357 : 241 - 251
  • [29] Fast and Simple Modular Subset Sum
    Axiotis, Kyriakos
    Backurs, Arturs
    Bringmann, Karl
    Jin, Ce
    Nakos, Vasileios
    Tzamos, Christos
    Wu, Hongxun
    2021 SYMPOSIUM ON SIMPLICITY IN ALGORITHMS, SOSA, 2021, : 57 - 67
  • [30] ON THE EQUAL-SUBSET-SUM PROBLEM
    WOEGINGER, GJ
    YU, ZL
    INFORMATION PROCESSING LETTERS, 1992, 42 (06) : 299 - 302