Degenerate poly-Cauchy polynomials

被引:5
|
作者
Dolgy, Dmitry V. [1 ]
Kim, Dae San [2 ]
Kim, Taekyun [3 ]
Mansour, Toufik [4 ]
机构
[1] Far Eastern Fed Univ, Inst Nat Sci, Vladivostok 690950, Russia
[2] Sogang Univ, Dept Math, Seoul 121742, South Korea
[3] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[4] Univ Haifa, Dept Math, IL-3498838 Haifa, Israel
基金
俄罗斯科学基金会;
关键词
Bernoulli polynomials; Poly-Cauchy polynomials; Degenerate poly-Cauchy polynomials; Umbral calculus; UMBRAL CALCULUS; BERNOULLI;
D O I
10.1016/j.amc.2015.07.117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study several properties for the degenerate poly-Cauchy polynomials. We present several explicit formulas and recurrence relations for these polynomials. Also, we establish a connection between our polynomials and several known families of polynomials. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:637 / 646
页数:10
相关论文
共 50 条
  • [41] Some relationships between poly-Cauchy numbers and poly-Bernoulli numbers
    Komatsu, Takao
    Luca, Florian
    ANNALES MATHEMATICAE ET INFORMATICAE, 2013, 41 : 99 - 105
  • [42] Recurrence Relations of Poly-Cauchy Numbers by the r-Stirling Transform
    Takao Komatsu
    Mediterranean Journal of Mathematics, 2022, 19
  • [43] On finite-times degenerate Cauchy numbers and polynomials
    Joohee Jeong
    Seog-Hoon Rim
    Byung Moon Kim
    Advances in Difference Equations, 2015
  • [44] Recurrence Relations of Poly-Cauchy Numbers by the r-Stirling Transform
    Komatsu, Takao
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [45] On finite-times degenerate Cauchy numbers and polynomials
    Jeong, Joohee
    Rim, Seog-Hoon
    Kim, Byung Moon
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [46] Multi-Poly-Cauchy polynomials
    Kim, Dae San
    Kim, Taekyun
    Komatsu, Takao
    Rim, Seog-Hoon
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (03) : 536 - 550
  • [47] Several explicit formulas for (degenerate) Narumi and Cauchy polynomials and numbers
    Qi, Feng
    Dagli, Muhammet Cihat
    Lim, Dongkyu
    OPEN MATHEMATICS, 2021, 19 (01): : 833 - 849
  • [48] Generalized poly-Cauchy and poly-Bernoulli numbers by using incomplete r-Stirling numbers
    Komatsu, Takao
    Ramirez, Jose L.
    AEQUATIONES MATHEMATICAE, 2017, 91 (06) : 1055 - 1071
  • [49] Representations of degenerate poly-Bernoulli polynomials
    Taekyun Kim
    Dae San Kim
    Jongkyum Kwon
    Hyunseok Lee
    Journal of Inequalities and Applications, 2021
  • [50] Degenerate poly-Bell polynomials and numbers
    Taekyun Kim
    Hye Kyung Kim
    Advances in Difference Equations, 2021