Degenerate poly-Cauchy polynomials

被引:5
|
作者
Dolgy, Dmitry V. [1 ]
Kim, Dae San [2 ]
Kim, Taekyun [3 ]
Mansour, Toufik [4 ]
机构
[1] Far Eastern Fed Univ, Inst Nat Sci, Vladivostok 690950, Russia
[2] Sogang Univ, Dept Math, Seoul 121742, South Korea
[3] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[4] Univ Haifa, Dept Math, IL-3498838 Haifa, Israel
基金
俄罗斯科学基金会;
关键词
Bernoulli polynomials; Poly-Cauchy polynomials; Degenerate poly-Cauchy polynomials; Umbral calculus; UMBRAL CALCULUS; BERNOULLI;
D O I
10.1016/j.amc.2015.07.117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study several properties for the degenerate poly-Cauchy polynomials. We present several explicit formulas and recurrence relations for these polynomials. Also, we establish a connection between our polynomials and several known families of polynomials. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:637 / 646
页数:10
相关论文
共 50 条
  • [21] A Generalization of Poly-Cauchy Numbers and Their Properties
    Komatsu, Takao
    Laohakosol, Vichian
    Liptai, Kalman
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [22] Poly-Cauchy numbers with a q parameter
    Takao Komatsu
    The Ramanujan Journal, 2013, 31 : 353 - 371
  • [23] Poly-Cauchy numbers with a q parameter
    Komatsu, Takao
    RAMANUJAN JOURNAL, 2013, 31 (03): : 353 - 371
  • [24] Poly-Cauchy numbers with level 2
    Komatsu, Takao
    Pita-Ruiz, Claudio
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (07) : 570 - 585
  • [25] Poly-Cauchy Numbers with Higher Level
    Komatsu, Takao
    Sirvent, Victor F.
    SYMMETRY-BASEL, 2023, 15 (02):
  • [26] Generalizations of poly-Bernoulli and poly-Cauchy numbers
    Cenkci M.
    Young P.T.
    European Journal of Mathematics, 2015, 1 (4) : 799 - 828
  • [27] The log-convexity of the poly-Cauchy numbers
    Komatsu, Takao
    Zhao, Feng-Zhen
    QUAESTIONES MATHEMATICAE, 2017, 40 (01) : 39 - 47
  • [28] Sums of Products of Cauchy Numbers, Including Generalized Poly-Cauchy Numbers
    Komatsu, Takao
    TOKYO JOURNAL OF MATHEMATICS, 2015, 38 (01) : 45 - 74
  • [29] Generalized incomplete poly-Bernoulli and poly-Cauchy numbers
    Komatsu, Takao
    PERIODICA MATHEMATICA HUNGARICA, 2017, 75 (01) : 96 - 113
  • [30] Generalized incomplete poly-Bernoulli and poly-Cauchy numbers
    Takao Komatsu
    Periodica Mathematica Hungarica, 2017, 75 : 96 - 113