Degenerate poly-Cauchy polynomials

被引:5
|
作者
Dolgy, Dmitry V. [1 ]
Kim, Dae San [2 ]
Kim, Taekyun [3 ]
Mansour, Toufik [4 ]
机构
[1] Far Eastern Fed Univ, Inst Nat Sci, Vladivostok 690950, Russia
[2] Sogang Univ, Dept Math, Seoul 121742, South Korea
[3] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[4] Univ Haifa, Dept Math, IL-3498838 Haifa, Israel
基金
俄罗斯科学基金会;
关键词
Bernoulli polynomials; Poly-Cauchy polynomials; Degenerate poly-Cauchy polynomials; Umbral calculus; UMBRAL CALCULUS; BERNOULLI;
D O I
10.1016/j.amc.2015.07.117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study several properties for the degenerate poly-Cauchy polynomials. We present several explicit formulas and recurrence relations for these polynomials. Also, we establish a connection between our polynomials and several known families of polynomials. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:637 / 646
页数:10
相关论文
共 50 条
  • [1] Degenerate poly-Cauchy polynomials with a q parameter
    Kim, Dae San
    Kim, Taekyun
    Dolgy, Dmitry V.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 15
  • [2] Degenerate poly-Cauchy polynomials with a q parameter
    Dae San Kim
    Taekyun Kim
    Dmitry V Dolgy
    Journal of Inequalities and Applications, 2015
  • [3] A Note on the Degenerate Poly-Cauchy Polynomials and Numbers of the Second Kind
    Kim, Hye Kyung
    Jang, Lee-Chae
    SYMMETRY-BASEL, 2020, 12 (07):
  • [4] Some Identities of the Degenerate Poly-Cauchy and Unipoly Cauchy Polynomials of the Second Kind
    Muhiuddin, Ghulam
    Khan, Waseem A.
    Al-Kadi, Deena
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 132 (03): : 763 - 779
  • [5] Poly-Cauchy polynomials and generalized Bernoulli polynomials
    Komatsu T.
    Shibukawa G.
    Acta Scientiarum Mathematicarum, 2014, 80 (3-4): : 373 - 388
  • [6] GENERALIZED POLY-CAUCHY POLYNOMIALS AND THEIR INTERPOLATING FUNCTIONS
    Komatsu, Takao
    Luca, Florian
    Pita Ruiz, Claudio De J. V.
    COLLOQUIUM MATHEMATICUM, 2014, 136 (01) : 13 - 30
  • [7] Poly-Cauchy and Peters mixed-type polynomials
    Kim, Dae San
    Kim, Taekyun
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [8] Poly-Cauchy and Peters mixed-type polynomials
    Dae San Kim
    Taekyun Kim
    Advances in Difference Equations, 2014
  • [9] Generalized incomplete poly-Bernoulli polynomials and generalized incomplete poly-Cauchy polynomials
    Komatsu, Takao
    Luca, Florian
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (02) : 371 - 391
  • [10] An umbral calculus approach to poly-Cauchy polynomials with a q parameter
    Kim, Dae San
    Kim, Taekyun
    Komatsu, Takao
    Seo, Jong-Jin
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (05) : 762 - 792