Automated Spectral Reduction Pipelines

被引:3
|
作者
Smith, Robert J. [1 ]
Piascik, Andrzej S. [1 ]
Steele, Lain A. [1 ]
Barnsley, Robert M. [1 ,2 ]
机构
[1] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5RF, Merseyside, England
[2] Univ Oxford, Dept Phys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England
关键词
data reduction; processing pipelines; CCD; bias; dark current; spectral flat field; LIVERPOOL-TELESCOPE;
D O I
10.1117/12.2232771
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Liverpool Telescope automated spectral data reduction pipelines perform both removal of instrumental signatures and provide wavelength calibrated data products promptly after observation. Unique science drivers for each of three instruments led to novel hardware solutions which required reassessment of some of the conventional CCD reduction recipes. For example, we describe the derivation of bias and dark corrections on detectors with neither overscan or shutter. In the context of spectroscopy we compare the quality of flat fielding resulting from different algorithmic combinations of dispersed and non-dispersed sky and lamp flats in the case of spectra suffering from 2D spatial distortions.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] NEW ACHIEVEMENTS IN REDUCTION OF ACCIDENTS ON MAIN PIPELINES
    GUMEROV, AG
    VEKSHTEIN, MG
    MAVLYUTOV, RM
    NEFTYANOE KHOZYAISTVO, 1980, (10): : 44 - 46
  • [32] Running GTC Data Reduction Pipelines in Jupyter
    Pascual, Sergio
    Cardiel, Nicolas
    Cabello, Cristina
    Chamorro-Cazorla, Mario
    Catalan-Torrecilla, Cristina
    Dullo, Bililign T.
    Castillo-Morales, Africa
    Gil de Paz, Armando
    Gallego, Jesus
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXVIII, 2019, 523 : 187 - 190
  • [33] Data reduction pipelines for the Keck Observatory Archive
    Tran, H. D.
    Cohen, R.
    Colson, A.
    Mader, J. A.
    Swain, M.
    Laity, A. C.
    Kong, M.
    Gelino, C. R.
    Berriman, G. B.
    OBSERVATORY OPERATIONS: STRATEGIES, PROCESSES, AND SYSTEMS VI, 2016, 9910
  • [34] Automated Spectral Kernel Learning
    Li, Jian
    Liu, Yong
    Wang, Weiping
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 4618 - 4625
  • [35] Noise Reduction Based on CEEMDAN-ICA and Cross-Spectral Analysis for Leak Location in Water-Supply Pipelines
    Li, Shuaiyong
    Cai, Mengqian
    Han, Mingxiu
    Dai, Zhengxu
    IEEE SENSORS JOURNAL, 2022, 22 (13) : 13030 - 13042
  • [36] VolPy: Automated and scalable analysis pipelines for voltage imaging datasets
    Cai, Changjia
    Friedrich, Johannes
    Singh, Amrita
    Eybposh, M. Hossein
    Pnevmatikakis, Eftychios A.
    Podgorski, Kaspar
    Giovannucci, Andrea
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (04)
  • [37] Pairwise running of automated crystallographic model-building pipelines
    Alharbi, Emad
    Calinescu, Radu
    Cowtan, Kevin
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2020, 76 : 814 - 823
  • [38] Automated evolutionary approach for the design of composite machine learning pipelines
    Nikitin, Nikolay O.
    Vychuzhanin, Pavel
    Sarafanov, Mikhail
    Polonskaia, Iana S.
    Revin, Ilia
    V. Barabanova, Irina
    Maximov, Gleb
    Kalyuzhnaya, Anna, V
    Boukhanovsky, Alexander
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 127 : 109 - 125
  • [39] Automated Vision Systems for Condition Assessment of Sewer and Water Pipelines
    Rayhana, Rakiba
    Jiao, Yutong
    Zaji, Amirhossein
    Liu, Zheng
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2021, 18 (04) : 1861 - 1878
  • [40] ARTIFACT: Architecture for Automated Generation of Distributed Information Extraction Pipelines
    Sildatke, Michael
    Karwanni, Hendrik
    Kraft, Bodo
    Zundorf, Albert
    ICEIS: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS - VOL 2, 2022, : 17 - 28