Automated Spectral Kernel Learning

被引:0
|
作者
Li, Jian [1 ,2 ]
Liu, Yong [1 ,2 ]
Wang, Weiping [1 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The generalization performance of kernel methods is largely determined by the kernel, but spectral representations of stationary kernels are both input-independent and output-independent, which limits their applications on complicated tasks. In this paper, we propose an efficient learning framework that incorporates the process of finding suitable kernels and model training. Using non-stationary spectral kernels and backpropagation w.r.t. the objective, we obtain favorable spectral representations that depends on both inputs and outputs. Further, based on Rademacher complexity, we derive data-dependent generalization error bounds, where we investigate the effect of those factors and introduce regularization terms to improve the performance. Extensive experimental results validate the effectiveness of the proposed algorithm and coincide with our theoretical findings.
引用
收藏
页码:4618 / 4625
页数:8
相关论文
共 50 条
  • [1] Indefinite kernel spectral learning
    Mehrkanoon, Siamak
    Huang, Xiaolin
    Suykens, Johan A. K.
    [J]. PATTERN RECOGNITION, 2018, 78 : 144 - 153
  • [2] Deep Spectral Kernel Learning
    Xue, Hui
    Wu, Zheng-Fan
    Sun, Wei-Xiang
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4019 - 4025
  • [3] Constrained Clustering by Spectral Kernel Learning
    Li, Zhenguo
    Liu, Jianzhuang
    [J]. 2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 421 - 427
  • [4] Kernel Learning by Spectral Representation and Gaussian Mixtures
    Pena-Llamas, Luis R.
    Guardado-Medina, Ramon O.
    Garcia, Arturo
    Mendez-Vazquez, Andres
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [5] Kernel Spectral Clustering for dynamic data using Multiple Kernel Learning
    Peluffo-Ordonez, D.
    Garcia-Vega, S.
    Langone, R.
    Suykens, J. A. K.
    Castellanos-Dominguez, G.
    [J]. 2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [6] Convolutional spectral kernel learning with generalization guarantees
    Li, Jian
    Liu, Yong
    Wang, Weiping
    [J]. ARTIFICIAL INTELLIGENCE, 2022, 313
  • [7] Multiple Kernel Learning for Spectral Dimensionality Reduction
    Hernan Peluffo-Ordonez, Diego
    Eduardo Castro-Ospina, Andres
    Carlos Alvarado-Perez, Juan
    Javier Revelo-Fuelagan, Edgardo
    [J]. PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2015, 2015, 9423 : 626 - 634
  • [8] Scalable Levy Process Priors for Spectral Kernel Learning
    Jang, Phillip A.
    Loeb, Andrew E.
    Davidow, Matthew B.
    Wilson, Andrew Gordon
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [9] Automated structural health monitoring based on adaptive kernel spectral clustering
    Langone, Rocco
    Reynders, Edwin
    Mehrkanoon, Siamak
    Suykens, Johan A. K.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 90 : 64 - 78
  • [10] Learning eigenfunctions links spectral embedding and kernel PCA
    Bengio, Y
    Delalleau, O
    Le Roux, N
    Paiement, JF
    Vincent, P
    Ouimet, M
    [J]. NEURAL COMPUTATION, 2004, 16 (10) : 2197 - 2219