Constrained Clustering by Spectral Kernel Learning

被引:0
|
作者
Li, Zhenguo [1 ]
Liu, Jianzhuang [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Informat Engn, Hong Kong, Hong Kong, Peoples R China
关键词
MODELS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Clustering performance can often be greatly improved by leveraging side information. In this paper, we consider constrained clustering with pairwise constraints, which specify some pairs of objects from the same cluster or not. The main idea is to design a kernel to respect both the proximity structure of the data and the given pairwise constraints. We propose a spectral kernel learning framework and formulate it as a convex quadratic program, which can be optimally solved efficiently. Our framework enjoys several desirable features: 1) it is applicable to multi-class problems; 2) it can handle both must-link and cannot-link constraints; 3) it can propagate pairwise constraints effectively; 4) it is scalable to large-scale problems; and 5) it can handle weighted pairwise constraints. Extensive experiments have demonstrated the superiority of the proposed approach.
引用
收藏
页码:421 / 427
页数:7
相关论文
共 50 条
  • [1] Kernel Spectral Clustering for dynamic data using Multiple Kernel Learning
    Peluffo-Ordonez, D.
    Garcia-Vega, S.
    Langone, R.
    Suykens, J. A. K.
    Castellanos-Dominguez, G.
    [J]. 2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [2] Learning low-rank kernel matrices for constrained clustering
    Baghshah, Mahdieh Soleymani
    Shouraki, Saeed Bagheri
    [J]. NEUROCOMPUTING, 2011, 74 (12-13) : 2201 - 2211
  • [3] Scalable semi-supervised clustering by spectral kernel learning
    Baghshah, M. Soleymani
    Afsari, F.
    Shouraki, S. Bagheri
    Eslami, E.
    [J]. PATTERN RECOGNITION LETTERS, 2014, 45 : 161 - 171
  • [4] Multiclass Semisupervised Learning Based Upon Kernel Spectral Clustering
    Mehrkanoon, Siamak
    Alzate, Carlos
    Mall, Raghvendra
    Langone, Rocco
    Suykens, Johan A. K.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (04) : 720 - 733
  • [5] Constrained clustering and multiple kernel learning without pairwise constraint relaxation
    Boecking, Benedikt
    Jeanselme, Vincent
    Dubrawski, Artur
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024, 18 (02) : 309 - 324
  • [6] Hierarchical kernel spectral clustering
    Alzate, Carlos
    Suykens, Johan A. K.
    [J]. NEURAL NETWORKS, 2012, 35 : 21 - 30
  • [7] Fast kernel spectral clustering
    Langone, Rocco
    Suykens, Johan A. K.
    [J]. NEUROCOMPUTING, 2017, 268 : 27 - 33
  • [8] Spectral kernel methods for clustering
    Cristianini, N
    Shawe-Taylor, J
    Kandola, J
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 649 - 655
  • [9] Soft Kernel Spectral Clustering
    Langone, Rocco
    Mall, Raghvendra
    Suykens, Johan A. K.
    [J]. 2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [10] Multiple Kernel Learning Based Multi-view Spectral Clustering
    Guo, Dongyan
    Zhang, Jian
    Liu, Xinwang
    Cui, Ying
    Zhao, Chunxia
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3774 - 3779