Data-Driven Models for Objective Grading Improvement of Parkinson's Disease

被引:15
|
作者
Butt, Abdul Haleem [1 ,2 ,6 ]
Rovini, Erika [1 ,2 ]
Fujita, Hamido [3 ]
Maremmani, Carlo [4 ]
Cavallo, Filippo [1 ,2 ,5 ]
机构
[1] Scuola Super Sant Anna, BioRobot Inst, Viale Rinaldo Piaggio 34, I-56025 Pontedera, Italy
[2] Scuola Super Sant Anna, Dept Excellence Robot & AI, Piazza Martiri Liberta 33, I-56127 Pisa, Italy
[3] Iwate Prefectural Univ, Intelligent Software Syst Lab, 152-52Sugo, Takizawa, Iwate, Japan
[4] Osped Apuane AUSL Toscana Nord Ovest, UO Neurol, Viale Mattei 21, I-54100 Massa, Italy
[5] Univ Florence, Dept Ind Engn, Via Santa Marta 3, I-50139 Florence, Italy
[6] Air Univ Islamabad Pakistan, Fac Comp & Artificial Intelligence, Creat Technol Dept, Serv Rd E-9-E-8, Islamabad, Pakistan
关键词
ANFIS; Artificial intelligence; Regression models; Predictive methods; Parkinson disease severity;
D O I
10.1007/s10439-020-02628-4
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Parkinson's disease (PD) is a progressive disorder of the central nervous system that causes motor dysfunctions in affected patients. Objective assessment of symptoms can support neurologists in fine evaluations, improving patients' quality of care. Herein, this study aimed to develop data-driven models based on regression algorithms to investigate the potential of kinematic features to predict PD severity levels. Sixty-four patients with PD (PwPD) and 50 healthy subjects of control (HC) were asked to perform 13 motor tasks from the MDS-UPDRS III while wearing wearable inertial sensors. Simultaneously, the clinician provided the evaluation of the tasks based on the MDS-UPDRS scores. One hundred-ninety kinematic features were extracted from the inertial motor data. Data processing and statistical analysis identified a set of parameters able to distinguish between HC and PwPD. Then, multiple feature selection methods allowed selecting the best subset of parameters for obtaining the greatest accuracy when used as input for several predicting regression algorithms. The maximum correlation coefficient, equal to 0.814, was obtained with the adaptive neuro-fuzzy inference system (ANFIS). Therefore, this predictive model could be useful as a decision support system for a reliable objective assessment of PD severity levels based on motion performance, improving patients monitoring over time.
引用
收藏
页码:2976 / 2987
页数:12
相关论文
共 50 条
  • [21] Progression subtypes in Parkinson's disease identified by a data-driven multi cohort analysis
    Haehnel, Tom
    Raschka, Tamara
    Sapienza, Stefano
    Klucken, Jochen
    Glaab, Enrico
    Corvol, Jean-Christophe
    Falkenburger, Bjoern H.
    Froehlich, Holger
    NPJ PARKINSONS DISEASE, 2024, 10 (01)
  • [22] Hierarchical Data-Driven Analysis of Clinical Symptoms Among Patients With Parkinson's Disease
    Kozlovski, Tal
    Mitelpunkt, Alexis
    Thaler, Avner
    Gurevich, Tanya
    Orr-Urtreger, Avi
    Gana-Weisz, Mali
    Shachar, Netta
    Galili, Tal
    Marcus-Kalish, Mira
    Bressman, Susan
    Marder, Karen
    Giladi, Nir
    Benjamini, Yoav
    Mirelman, Anat
    FRONTIERS IN NEUROLOGY, 2019, 10
  • [23] Piloting the NPF data-driven quality initiative to improve Parkinson's disease management
    Siderowf, A.
    Nutt, J.
    O'Conner, G.
    Bloem, B.
    Olmstead, E.
    Guttman, M.
    Simuni, T.
    Cheng, E.
    Cohen, E.
    Parashos, S.
    Marsh, L.
    Malaty, I.
    Giladi, N.
    Schmidt, P.
    Oberdorf, J.
    Okun, M.
    PARKINSONISM & RELATED DISORDERS, 2009, 15 : S1 - S1
  • [24] A Data-Driven Biophysical Computational Model of Parkinson's Disease Based on Marmoset Monkeys
    Ranieri, Caetano M.
    Pimentel, Jhielson M.
    Romano, Marcelo R.
    Elias, Leonardo A.
    Romero, Roseli A. F.
    Lones, Michael A.
    Araujo, Mariana F. P.
    Vargas, Patricia A.
    Moioli, Renan C.
    IEEE ACCESS, 2021, 9 : 122548 - 122567
  • [25] Systematic review of data-driven cognitive subtypes in Parkinson disease
    Pourzinal, Dana
    Yang, Jihyun
    Lawson, Rachael A.
    McMahon, Katie L.
    Byrne, Gerard J.
    Dissanayaka, Nadeeka N.
    EUROPEAN JOURNAL OF NEUROLOGY, 2022, 29 (11) : 3395 - 3417
  • [26] Multi-Objective Evolutionary Design of Composite Data-Driven Models
    Polonskaia, Iana S.
    Nikitin, Nikolay O.
    Revin, Ilia
    Vychuzhanin, Pavel
    Kalyuzhnaya, Anna, V
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 926 - 933
  • [27] Data-driven models of dominantly-inherited Alzheimer's disease progression
    Oxtoby, Neil P.
    Young, Alexandra L.
    Cash, David M.
    Benzinger, Tammie L. S.
    Fagan, Anne M.
    Morris, John C.
    Bateman, Randall J.
    Fox, Nick C.
    Schott, Jonathan M.
    Alexander, Daniel C.
    BRAIN, 2018, 141 : 1529 - 1544
  • [28] Data-driven Approach to Identify Subtypes and Progression of Parkinson's disease using Multimodal Imaging Data
    Vijayakumari, Anupa Ambili
    Fernandez, Hubert
    Walter, Benjamin
    NEUROLOGY, 2023, 100 (17)
  • [29] Data-driven modeling of sleep EEG and EOG reveals characteristics indicative of pre-Parkinson's and Parkinson's disease
    Christensen, Julie A. E.
    Zoetmulder, Marielle
    Koch, Henriette
    Frandsen, Rune
    Arvastson, Lars
    Christensen, Soren R.
    Jennum, Poul
    Sorensen, Helge B. D.
    JOURNAL OF NEUROSCIENCE METHODS, 2014, 235 : 262 - 276
  • [30] Data-driven image-based subtyping and staging of neurodegeneration in Parkinson's disease (PD)
    Ha, J.
    Park, G.
    Lee, J. S.
    Ahn, J. H.
    Kim, W.
    Cho, J. W.
    Kim, H.
    Youn, J.
    MOVEMENT DISORDERS, 2024, 39 : S490 - S490