A Data-Driven Biophysical Computational Model of Parkinson's Disease Based on Marmoset Monkeys

被引:5
|
作者
Ranieri, Caetano M. [1 ]
Pimentel, Jhielson M. [2 ]
Romano, Marcelo R. [3 ,4 ]
Elias, Leonardo A. [3 ,4 ]
Romero, Roseli A. F. [1 ]
Lones, Michael A. [2 ]
Araujo, Mariana F. P. [5 ,6 ]
Vargas, Patricia A. [2 ]
Moioli, Renan C. [7 ]
机构
[1] Univ Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, SP, Brazil
[2] Heriot Watt Univ, Edinburgh Ctr Robot, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Estadual Campinas, Ctr Biomed Engn, Neural Engn Res Lab, BR-13083881 Campinas, SP, Brazil
[4] Univ Estadual Campinas, Sch Elect & Comp Engn, Dept Elect & Biomed Engn, BR-13083852 Campinas, SP, Brazil
[5] Univ Fed Espirito Santo, Hlth Sci Ctr, Dept Physiol Sci, BR-29047105 Vitoria, ES, Brazil
[6] Santos Dumont Inst, Edmond & Lily Safra Int Inst Neurosci IINELS, BR-59280000 Macaiba, State Of Rio Gr, Brazil
[7] Univ Fed Rio Grande do Norte, Digital Metropolis Inst, Bioinformat Multidisciplinary Environm BioME, BR-59078970 Natal, RN, Brazil
基金
巴西圣保罗研究基金会;
关键词
Computational modeling; Integrated circuit modeling; Biological system modeling; Brain modeling; Handheld computers; Mathematical model; Diseases; Basal ganglia; brain modelling; computational modelling; evolutionary computation; neural engineering; Parkinson's disease; 6-OHDA lesioned marmoset model; BASAL GANGLIA; FUNCTIONAL-SIGNIFICANCE; NEURAL OSCILLATIONS; ACTIVITY PATTERNS; ACTION SELECTION; MOTOR DEFICITS; SYNCHRONY; STIMULATION; NETWORK; DYNAMICS;
D O I
10.1109/ACCESS.2021.3108682
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work we propose a new biophysical computational model of brain regions relevant to Parkinson's Disease (PD) based on local field potential data collected from the brain of marmoset monkeys. PD is a neurodegenerative disorder, linked to the death of dopaminergic neurons at the substantia nigra pars compacta, which affects the normal dynamics of the basal ganglia-thalamus-cortex (BG-T-C) neuronal circuit of the brain. Although there are multiple mechanisms underlying the disease, a complete description of those mechanisms and molecular pathogenesis are still missing, and there is still no cure. To address this gap, computational models that resemble neurobiological aspects found in animal models have been proposed. In our model, we performed a data-driven approach in which a set of biologically constrained parameters is optimised using differential evolution. Evolved models successfully resembled spectral signatures of local field potentials and single-neuron mean firing rates from healthy and parkinsonian marmoset brain data. This is the first computational model of PD based on simultaneous electrophysiological recordings from seven brain regions of Marmoset monkeys. Results indicate that the proposed model may facilitate the investigation of the mechanisms of PD and eventually support the development of new therapies. The DE method could also be applied to other computational neuroscience problems in which biological data is used to fit multi-scale models of brain circuits.
引用
收藏
页码:122548 / 122567
页数:20
相关论文
共 50 条
  • [1] Data-Driven Based Approach to Aid Parkinson's Disease Diagnosis
    Khoury, Nicolas
    Attal, Ferhat
    Amirat, Yacine
    Oukhellou, Latifa
    Mohammed, Samer
    SENSORS, 2019, 19 (02)
  • [2] Data-driven disease progression model of Parkinson's disease and effect of sex and genetic variants
    Jin, Ryota
    Yoshioka, Hideki
    Sato, Hiromi
    Hisaka, Akihiro
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2024, 13 (04): : 649 - 659
  • [3] Studying reproducibility of data-driven Parkinson's disease subtypes
    van Rooden, Stephanie M.
    Verbaan, Dagmar
    Jeukens-Visser, Martine
    van Hilten, Jacobus J.
    PARKINSONISM & RELATED DISORDERS, 2019, 62 : 251 - 252
  • [4] Data-driven prediction of fatigue in Parkinson's disease patients
    Lee, D. G.
    Mirian, M.
    Adrian, L.
    Yu, A.
    Neilson, S.
    Sundvick, K.
    Golz, E.
    Folger, L.
    Appel-Cresswell, S.
    MOVEMENT DISORDERS, 2021, 36 : S422 - S423
  • [5] Data-Driven Prediction of Fatigue in Parkinson's Disease Patients
    Lee, Dong Goo
    Lindsay, Adrian
    Yu, Adam
    Neilson, Samantha
    Sundvick, Kristen
    Golz, Ella
    Foulger, Liam
    Mirian, Maryam
    Appel-Cresswell, Silke
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4
  • [6] Motor Patterns in Parkinson's Disease: A Data-Driven Approach
    van Rooden, Stephanie M.
    Visser, Martine
    Mr, Da-Mar Verbaan
    Marinus, Johan
    van Hilten, Jacobus J.
    MOVEMENT DISORDERS, 2009, 24 (07) : 1042 - 1047
  • [7] Nuclear Imaging Data-Driven Classification of Parkinson's Disease
    Totsune, Tomoko
    Baba, Toru
    Sugimura, Yoko
    Oizumi, Hideki
    Tanaka, Hiroyasu
    Takahashi, Toshiaki
    Yoshioka, Masaru
    Nagamatsu, Ken-ichi
    Takeda, Atsushi
    MOVEMENT DISORDERS, 2023, 38 (11) : 2053 - 2063
  • [8] Learning-Based Computer-Aided Prescription Model for Parkinson's Disease: A Data-Driven Perspective
    Shi, Yinghuan
    Yang, Wanqi
    Thung, Kim-Han
    Wang, Hao
    Gao, Yang
    Pan, Yang
    Zhang, Li
    Shen, Dinggang
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (09) : 3258 - 3269
  • [9] Data-driven sequence of cognitive decline in people with Parkinson's disease
    Petkus, Andrew John
    Donahue, Erin
    Jakowec, Michael W.
    Bayram, Ece
    Van Horn, John Darrell
    Litvan, Irene
    Petzinger, Giselle M.
    Schiehser, Dawn M.
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2024, 95 (12): : 1123 - 1131
  • [10] Data-Driven Models for Objective Grading Improvement of Parkinson’s Disease
    Abdul Haleem Butt
    Erika Rovini
    Hamido Fujita
    Carlo Maremmani
    Filippo Cavallo
    Annals of Biomedical Engineering, 2020, 48 : 2976 - 2987