A Data-Driven Biophysical Computational Model of Parkinson's Disease Based on Marmoset Monkeys

被引:5
|
作者
Ranieri, Caetano M. [1 ]
Pimentel, Jhielson M. [2 ]
Romano, Marcelo R. [3 ,4 ]
Elias, Leonardo A. [3 ,4 ]
Romero, Roseli A. F. [1 ]
Lones, Michael A. [2 ]
Araujo, Mariana F. P. [5 ,6 ]
Vargas, Patricia A. [2 ]
Moioli, Renan C. [7 ]
机构
[1] Univ Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, SP, Brazil
[2] Heriot Watt Univ, Edinburgh Ctr Robot, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Estadual Campinas, Ctr Biomed Engn, Neural Engn Res Lab, BR-13083881 Campinas, SP, Brazil
[4] Univ Estadual Campinas, Sch Elect & Comp Engn, Dept Elect & Biomed Engn, BR-13083852 Campinas, SP, Brazil
[5] Univ Fed Espirito Santo, Hlth Sci Ctr, Dept Physiol Sci, BR-29047105 Vitoria, ES, Brazil
[6] Santos Dumont Inst, Edmond & Lily Safra Int Inst Neurosci IINELS, BR-59280000 Macaiba, State Of Rio Gr, Brazil
[7] Univ Fed Rio Grande do Norte, Digital Metropolis Inst, Bioinformat Multidisciplinary Environm BioME, BR-59078970 Natal, RN, Brazil
基金
巴西圣保罗研究基金会;
关键词
Computational modeling; Integrated circuit modeling; Biological system modeling; Brain modeling; Handheld computers; Mathematical model; Diseases; Basal ganglia; brain modelling; computational modelling; evolutionary computation; neural engineering; Parkinson's disease; 6-OHDA lesioned marmoset model; BASAL GANGLIA; FUNCTIONAL-SIGNIFICANCE; NEURAL OSCILLATIONS; ACTIVITY PATTERNS; ACTION SELECTION; MOTOR DEFICITS; SYNCHRONY; STIMULATION; NETWORK; DYNAMICS;
D O I
10.1109/ACCESS.2021.3108682
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work we propose a new biophysical computational model of brain regions relevant to Parkinson's Disease (PD) based on local field potential data collected from the brain of marmoset monkeys. PD is a neurodegenerative disorder, linked to the death of dopaminergic neurons at the substantia nigra pars compacta, which affects the normal dynamics of the basal ganglia-thalamus-cortex (BG-T-C) neuronal circuit of the brain. Although there are multiple mechanisms underlying the disease, a complete description of those mechanisms and molecular pathogenesis are still missing, and there is still no cure. To address this gap, computational models that resemble neurobiological aspects found in animal models have been proposed. In our model, we performed a data-driven approach in which a set of biologically constrained parameters is optimised using differential evolution. Evolved models successfully resembled spectral signatures of local field potentials and single-neuron mean firing rates from healthy and parkinsonian marmoset brain data. This is the first computational model of PD based on simultaneous electrophysiological recordings from seven brain regions of Marmoset monkeys. Results indicate that the proposed model may facilitate the investigation of the mechanisms of PD and eventually support the development of new therapies. The DE method could also be applied to other computational neuroscience problems in which biological data is used to fit multi-scale models of brain circuits.
引用
收藏
页码:122548 / 122567
页数:20
相关论文
共 50 条
  • [21] The Combination of Tradition and Future: Data-Driven Natural-Product-Based Treatments for Parkinson's Disease
    Miao, Zhijun
    Bai, Jinwei
    Shen, Li
    Singla, Rajeev K.
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2021, 2021
  • [22] A data-driven computational model for engineered cardiac microtissues
    Jilberto, Javiera
    De Palma, Samuel J.
    Lo, Jason
    Kobeissi, Hiba
    Quach, Lani
    Lejeune, Emma
    Baker, Brendon M.
    Nordsletten, David
    ACTA BIOMATERIALIA, 2023, 172 : 123 - 134
  • [23] A data-driven computational model on the effects of immigration policies
    Simon, Miranda
    Schwartz, Cassilde
    Hudson, David
    Johnson, Shane D.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (34) : E7914 - E7923
  • [24] Neuropsychiatric Behaviors in the MPTP Marmoset Model of Parkinson's Disease
    Fox, Susan H.
    Visanji, Naomi
    Reyes, Gaby
    Huot, Philippe
    Gomez-Ramirez, Jordi
    Johnston, Tom
    Brotchie, Jonathan M.
    CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES, 2010, 37 (01) : 86 - 95
  • [25] Optimal MMSE and MoCA cutoffs for cognitive diagnoses in Parkinson's disease: A data-driven decision tree model
    Fiorenzato, Eleonora
    Cauzzo, Simone
    Weis, Luca
    Garon, Michela
    Pistonesi, Francesca
    Cianci, Valeria
    Nasi, Maria Laura
    Vianello, Francesca
    Zecchinelli, Anna Lena
    Pezzoli, Gianni
    Reali, Elisa
    Pozzi, Beatrice
    Isaias, Ioannis Ugo
    Siri, Chiara
    Santangelo, Gabriella
    Cuoco, Sofia
    Barone, Paolo
    Antonini, Angelo
    Biundo, Roberta
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2024, 466
  • [26] A robust computational pipeline for model-based and data-driven phenotype clustering
    Simoni, Giulia
    Kaddi, Chanchala
    Tao, Mengdi
    Reali, Federico
    Tomasoni, Danilo
    Priami, Corrado
    Azer, Karim
    Neves-Zaph, Susana
    Marchetti, Luca
    BIOINFORMATICS, 2021, 37 (09) : 1269 - 1277
  • [27] Postural instability via a loss of intermittent control in elderly and patients with Parkinson's disease: A model-based and data-driven approach
    Suzuki, Yasuyuki
    Nakamura, Akihiro
    Milosevic, Matija
    Nomura, Kunihiko
    Tanahashi, Takao
    Endo, Takuyuki
    Sakoda, Saburo
    Morasso, Pietro
    Nomura, Taishin
    CHAOS, 2020, 30 (11)
  • [28] Data-driven Gait based Severity Classification for Parkinson's Disease using Duo Spatiotemporal Convoluted Kernel Boosted ResNet model
    Paul, Arogia Victor M.
    Sankar, Sharmila
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2024, 15 (04) : 377 - 386
  • [29] Data-Driven in Computational Plasticity
    Ibanez, R.
    Abisset-Chavanne, E.
    Cueto, E.
    Chinesta, F.
    PROCEEDINGS OF 21ST INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING (ESAFORM 2018), 2018, 1960
  • [30] Data-driven computational mechanics
    Kirchdoerfer, T.
    Ortiz, M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 304 : 81 - 101