Optimal lower bounds for cubature error on the sphere S2

被引:26
|
作者
Hesse, K [1 ]
Sloan, IH [1 ]
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
cubature; lower bounds for cubature error; numerical integration; optimal estimates; Sobolev space; sphere packing; sphere; spherical caps; worst-case error;
D O I
10.1016/j.jco.2005.07.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that the worst-case cubature error E(Q(m); H-s) of an m-point cubature rule Q(m) to r functions in the unit ball of the Sobolev space H-s = H-s (S-2), s > 1, has the lower bound E (Q(m); H-s) >= c(s)m(- s/2), where the constant c(s) is independent of Q and in. This lower bound result is optimal, since we have established in previous work that there exist sequences (Q(m(n)))(n epsilon N) of cubature rules for which E (Q(m(n)); H-s) <= c(s) (m(n))(-s/2) with a constant E, independent of n. The method of proof is constructive: given the cubature rule Qm, we construct explicitly a 'bad' function f(m) epsilon H-s, which is a function for which Q(m)f(m) = 0 and vertical bar vertical bar f(m)vertical bar vertical bar(-1)(Hs)vertical bar integral(2)(S) f(m) (x) d omega (x) >= c(s)m(-s/2). The construction uses results about packings of spherical caps on the sphere. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:790 / 803
页数:14
相关论文
共 50 条
  • [21] Optimal cubature on the sphere and other orientation averaging schemes
    Penttila, Antti
    Lumme, Kari
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2011, 112 (11): : 1741 - 1746
  • [22] CUBATURE ERROR BOUNDS FOR GAUSS-LEGENDRE PRODUCT RULES
    LETHER, FG
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1971, 8 (01) : 36 - &
  • [23] On lower bounds for the chromatic number of sphere
    O. A. Kostina
    A. M. Raigorodskii
    Doklady Mathematics, 2015, 92 : 500 - 502
  • [24] On lower bounds for the chromatic number of sphere
    Kostina, O. A.
    Raigorodskii, A. M.
    DOKLADY MATHEMATICS, 2015, 92 (01) : 500 - 502
  • [25] Lower bounds for the Trotter error
    Hahn, Alexander
    Hartung, Paul
    Burgarth, Daniel
    Facchi, Paolo
    Yuasa, Kazuya
    PHYSICAL REVIEW A, 2025, 111 (02)
  • [26] OPTIMAL ERROR BOUNDS FOR THE CUBIC SPLINE INTERPOLATION OF LOWER SMOOTH FUNCTIONS(1)
    Ye Maodong Zhejiang University
    ApproximationTheoryandItsApplications, 1993, (04) : 46 - 54
  • [27] Optimal error bounds for the cubic spline interpolation of lower smooth function (I)
    Ye M.
    Applied Mathematics-A Journal of Chinese Universities, 1998, 13 (2) : 223 - 230
  • [28] Frontal Partner Curves on Unit Sphere S2
    Tanju Kahraman
    Acta Mathematica Sinica, English Series, 2020, 36 : 961 - 968
  • [29] On the error exponents of improved tangential sphere bounds
    Twitto, Moshe
    Sason, Igal
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (03) : 1196 - 1210
  • [30] Gaussian Process for Radiance Functions on the S2$\mathbb {S}∧2$ Sphere
    Marques, R.
    Bouville, C.
    Bouatouch, K.
    COMPUTER GRAPHICS FORUM, 2022, 41 (06) : 67 - 81