Weight one Jacobi forms and umbral moonshine

被引:9
|
作者
Cheng, Miranda C. N. [1 ,2 ]
Duncan, John F. R. [3 ]
Harvey, Jeffrey A. [4 ,5 ]
机构
[1] Univ Amsterdam, Inst Phys, Amsterdam, Netherlands
[2] Univ Amsterdam, Korteweg de Vries Inst Math, Amsterdam, Netherlands
[3] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[4] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA
[5] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
umbral moonshine; Weil representations; Jacobi forms; SIEGEL MODULAR-FORMS; AUTOMORPHIC-FORMS; SPACES; GENUS;
D O I
10.1088/1751-8121/aaa819
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze holomorphic Jacobi forms of weight one with level. One such form plays an important role in umbral moonshine, leading to simplifications of the statements of the umbral moonshine conjectures. We prove that nonzero holomorphic Jacobi forms of weight one do not exist for many combinations of index and level, and use this to establish a characterization of the McKay-Thompson series of umbral moonshine in terms of Rademacher sums.
引用
收藏
页数:37
相关论文
共 50 条