Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing

被引:0
|
作者
Abubaker, Ahmad [1 ,2 ]
Baharum, Adam [1 ]
Alrefaei, Mahmoud [3 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia
[2] Al Imam Muhammad Ibn Saud Islamic Univ, Dept Math & Stat, Riyadh 11623, Saudi Arabia
[3] Jordan Univ Sci & Technol, Dept Math & Stat, Irbid 22110, Jordan
来源
PLOS ONE | 2015年 / 10卷 / 07期
关键词
ALGORITHM; EVOLUTION; BEHAVIOR;
D O I
10.1371/journal.pone.0130995
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, "MOPSOSA". The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA combines the features of the multi-objective based particle swarm optimization (PSO) and the Multi-Objective Simulated Annealing (MOSA). Three cluster validity indices were optimized simultaneously to establish the suitable number of clusters and the appropriate clustering for a dataset. The first cluster validity index is centred on Euclidean distance, the second on the point symmetry distance, and the last cluster validity index is based on short distance. A number of algorithms have been compared with the MOPSOSA algorithm in resolving clustering problems by determining the actual number of clusters and optimal clustering. Computational experiments were carried out to study fourteen artificial and five real life datasets.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] A Particle Swarm Optimizer for Multi-Objective Optimization
    Cagnina, Leticia
    Esquivel, Susana
    Coello Coello, Carlos A.
    JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2005, 5 (04): : 204 - 210
  • [32] An Improving Multi-Objective Particle Swarm Optimization
    Fan, JiShan
    WEB INFORMATION SYSTEMS AND MINING, 2010, 6318 : 1 - 6
  • [33] An Introduction to Multi-Objective Particle Swarm Optimizers
    Coello Coello, Carlos A.
    SOFT COMPUTING IN INDUSTRIAL APPLICATIONS, 2011, 96 : 3 - 12
  • [34] On convergence of the multi-objective particle swarm optimizers
    Chakraborty, Prithwish
    Das, Swagatam
    Roy, Gourab Ghosh
    Abraham, Ajith
    INFORMATION SCIENCES, 2011, 181 (08) : 1411 - 1425
  • [35] An Improved Multi-Objective Particle Swarm Optimization
    Yang, Xixiang
    Zhang, Weihua
    ADVANCED SCIENCE LETTERS, 2011, 4 (4-5) : 1491 - 1495
  • [36] A NEW PROPOSAL FOR A MULTI-OBJECTIVE TECHNIQUE USING TRIBES AND SIMULATED ANNEALING
    Smairi, Nadia
    Bouamama, Sadok
    Ghedira, Khaled
    Siarry, Patrick
    ICINCO 2011: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 1, 2011, : 130 - 135
  • [37] ChemMORT: an automatic ADMET optimization platform using deep learning and multi-objective particle swarm optimization
    Yi, Jia-Cai
    Yang, Zi-Yi
    Zhao, Wen-Tao
    Yang, Zhi-Jiang
    Zhang, Xiao-Chen
    Wu, Cheng-Kun
    Lu, Ai-Ping
    Cao, Dong-Sheng
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [38] Multi-objective flow shop scheduling using hybrid simulated annealing
    Dhingra, Ashwani
    Chandna, Pankaj
    MEASURING BUSINESS EXCELLENCE, 2010, 14 (03) : 30 - 41
  • [39] Bi-objective Portfolio Optimization Using Archive Multi-objective Simulated Annealing
    Sen, Tanmay
    Saha, Sriparna
    Ekbal, Asif
    Laha, Amab Kumar
    2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND APPLICATIONS (ICHPCA), 2014,
  • [40] Multi-objective robust PID controller tuning using two lbests multi-objective particle swarm optimization
    Zhao, S. -Z.
    Iruthayarajan, M. Willjuice
    Baskar, S.
    Suganthan, P. N.
    INFORMATION SCIENCES, 2011, 181 (16) : 3323 - 3335