Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing

被引:0
|
作者
Abubaker, Ahmad [1 ,2 ]
Baharum, Adam [1 ]
Alrefaei, Mahmoud [3 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia
[2] Al Imam Muhammad Ibn Saud Islamic Univ, Dept Math & Stat, Riyadh 11623, Saudi Arabia
[3] Jordan Univ Sci & Technol, Dept Math & Stat, Irbid 22110, Jordan
来源
PLOS ONE | 2015年 / 10卷 / 07期
关键词
ALGORITHM; EVOLUTION; BEHAVIOR;
D O I
10.1371/journal.pone.0130995
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, "MOPSOSA". The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA combines the features of the multi-objective based particle swarm optimization (PSO) and the Multi-Objective Simulated Annealing (MOSA). Three cluster validity indices were optimized simultaneously to establish the suitable number of clusters and the appropriate clustering for a dataset. The first cluster validity index is centred on Euclidean distance, the second on the point symmetry distance, and the last cluster validity index is based on short distance. A number of algorithms have been compared with the MOPSOSA algorithm in resolving clustering problems by determining the actual number of clusters and optimal clustering. Computational experiments were carried out to study fourteen artificial and five real life datasets.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Clustering-Based Leaders' Selection in Multi-Objective Particle Swarm Optimisation
    Al Moubayed, Noura
    Petrovski, Andrei
    McCall, John
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2011, 2011, 6936 : 100 - 107
  • [22] Optimal sizing of off-line microgrid via hybrid multi-objective simulated annealing particle swarm optimizer
    Hafez, Ahmed A.
    Abdelaziz, Almoataz Y.
    Hendy, Mohamed A.
    Ali, Alaa F. M.
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 94
  • [23] Robust optimization using multi-objective particle swarm optimization
    Ono S.
    Yoshitake Y.
    Nakayama S.
    Artificial Life and Robotics, 2009, 14 (02) : 174 - 177
  • [24] Multi-Objective Generation Dispatch Using Particle Swarm Optimisation
    Rani, C.
    Kumar, M. Rajesh
    Pavan, K.
    INDIA INTERNATIONAL CONFERENCE ON POWER ELECTRONIC S, 2006, : 421 - 424
  • [25] Virtual Photography Using Multi-Objective Particle Swarm Optimization
    Barry, William
    Ross, Brian J.
    GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 285 - 292
  • [26] Multi-Objective VAR Dispatch Using Particle Swarm Optimization
    Durairaj, S.
    Kannan, P. S.
    Devaraj, D.
    INTERNATIONAL JOURNAL OF EMERGING ELECTRIC POWER SYSTEMS, 2005, 4 (01):
  • [27] Dominance measures for multi-objective simulated annealing
    Smith, KI
    Everson, RM
    Fieldsend, JE
    CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 23 - 30
  • [28] Automatic Generation of Biclusters from Gene Expression Data Using Multi-objective Simulated Annealing Approach
    Sahoo, Pracheta
    Acharya, Sudipta
    Saha, Sriparna
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2174 - 2179
  • [29] An Improved Multi-objective Particle Swarm Optimization
    Xu, Shengbing
    Ouyang, Zhiping
    Feng, Jiqiang
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA 2020), 2020, : 19 - 23
  • [30] On Convergence of Multi-objective Particle Swarm Optimizers
    Chakraborty, Prithwish
    Das, Swagatam
    Abraham, Ajith
    Snasel, Vaclav
    Roy, Gourab Ghosh
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,