Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression

被引:19
|
作者
Montesinos-Lopez, Osval A. [1 ]
Montesinos-Lopez, Abelardo [2 ]
Crossa, Jose [3 ]
Burgueno, Juan [3 ]
Eskridge, Kent [4 ]
机构
[1] Univ Colima, Fac Telemat, Colima 28040, Mexico
[2] Ctr Invest Matemat CIMAT, Dept Estadist, Guanajuato 36240, Mexico
[3] Int Maize & Wheat Improvement Ctr CIMMYT, Biometr & Stat Unit, Mexico City 06600, DF, Mexico
[4] Univ Nebraska, Dept Stat, Lincoln, NE 68583 USA
来源
G3-GENES GENOMES GENETICS | 2015年 / 5卷 / 10期
关键词
Bayesian ordinal regression; genomic selection; probit; logit; Gibbs sampler; GenPred; shared data resource; THRESHOLD MODELS; PLANT; INFERENCE; SELECTION; TRAITS;
D O I
10.1534/g3.115.021154
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Most genomic-enabled prediction models developed so far assume that the response variable is continuous and normally distributed. The exception is the probit model, developed for ordered categorical phenotypes. In statistical applications, because of the easy implementation of the Bayesian probit ordinal regression (BPOR) model, Bayesian logistic ordinal regression (BLOR) is implemented rarely in the context of genomic-enabled prediction [sample size (n) is much smaller than the number of parameters (p)]. For this reason, in this paper we propose a BLOR model using the Polya-Gamma data augmentation approach that produces a Gibbs sampler with similar full conditional distributions of the BPOR model and with the advantage that the BPOR model is a particular case of the BLOR model. We evaluated the proposed model by using simulation and two real data sets. Results indicate that our BLOR model is a good alternative for analyzing ordinal data in the context of genomic-enabled prediction with the probit or logit link.
引用
收藏
页码:2113 / 2126
页数:14
相关论文
共 50 条
  • [1] Bayesian Genomic-Enabled Prediction as an Inverse Problem
    Cuevas, Jaime
    Perez-Elizalde, Sergio
    Soberanis, Victor
    Perez-Rodriguez, Paulino
    Gianola, Daniel
    Crossa, Jose
    [J]. G3-GENES GENOMES GENETICS, 2014, 4 (10): : 1991 - 2001
  • [2] Ordinal logistic regression
    Warner, Pamela
    [J]. JOURNAL OF FAMILY PLANNING AND REPRODUCTIVE HEALTH CARE, 2008, 34 (03): : 169 - 170
  • [3] Ordinal logistic regression
    Koletsi, Despina
    Pandis, Nikolaos
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2018, 153 (01) : 157 - 158
  • [4] Selection of the Bandwidth Parameter in a Bayesian Kernel Regression Model for Genomic-Enabled Prediction
    Sergio Pérez-Elizalde
    Jaime Cuevas
    Paulino Pérez-Rodríguez
    José Crossa
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2015, 20 : 512 - 532
  • [5] Selection of the Bandwidth Parameter in a Bayesian Kernel Regression Model for Genomic-Enabled Prediction
    Perez-Elizalde, Sergio
    Cuevas, Jaime
    Perez-Rodriguez, Paulino
    Crossa, Jose
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2015, 20 (04) : 512 - 532
  • [6] Ordinal Regression Analysis: Using Generalized Ordinal Logistic Regression Models to Estimate Educational Data
    Liu, Xing
    Koirala, Hari
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2012, 11 (01) : 242 - 254
  • [7] Bayesian quantile regression for ordinal longitudinal data
    Alhamzawi, Rahim
    Ali, Haithem Taha Mohammad
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (05) : 815 - 828
  • [8] Multinomial and ordinal logistic regression
    Sainani, Kristin L.
    [J]. PM&R, 2021, 13 (09) : 1050 - 1055
  • [9] The Use of Logistic and Ordinal Regression for the Prediction of the Phadiatop Test Results
    Kuranova, Pavlina
    Hajdukova, Zdenka
    [J]. 2013 INTERNATIONAL CONFERENCE ON DIGITAL TECHNOLOGIES (DT), 2013, : 111 - 115
  • [10] Ordinal Regression with Sparse Bayesian
    Chang, Xiao
    Zheng, Qinghua
    Lin, Peng
    [J]. EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2009, 5755 : 591 - 599