Rational promoter elements and evolutionary engineering approaches for efficient xylose fermentation in Saccharomyces cerevisiae

被引:2
|
作者
Sang, Yaxin [1 ]
Xue, Qian [1 ,2 ]
Bai, Zishang [3 ]
Wang, Jingyu [4 ]
Cao, Limin [2 ]
机构
[1] Agr Univ Hebei, Coll Food Sci & Technol, 2596 Lekainandajie, Baoding 071001, Hebei, Peoples R China
[2] Capital Normal Univ, Coll Life Sci, 105 Xisanhuanbeilu, Beijing 100048, Peoples R China
[3] Renmin Univ China, High Sch, 37 Zhongguancun St, Beijing 100080, Peoples R China
[4] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA
基金
中国国家自然科学基金;
关键词
PENTOSE-PHOSPHATE PATHWAY; ETHANOL-PRODUCTION; REDUCTASE; OVEREXPRESSION; IMPROVEMENT; PREFERENCE;
D O I
10.1063/1.4966707
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We screened and identified a set of efficient promoters in Saccharomyces cerevisiae that maintained their relatively strong strengths to regulate the heterologous xylose-assimilating pathway genes XYL1 and XYL2, and native XKS1 and pentose phosphate pathway four genes, irrespective of glucose or xylose fermentation medium. In this study, we developed a rapid and efficient xylose-fermenting S. cerevisiae strain 7-1 based on balanced pathway expression levels driven by our proposed strong promoters. Next, 7-1 was used to initialize the evolutionary engineering, through first aerobic and anaerobic sequential batch cultivation. The finally evolved strain of 7-1E1 displayed a high ethanol yield (0.45 g/g) and low xylitol accumulation (0.13 g/g). Moreover, the evolved strain of 7-1E1 displays great potential for ethanol production from lignocellulosic biomass. This work reveals that efficient xylose assimilation is attributed to the elevated expression levels of xylose utilization genes, which was accomplished through the strong promoter rational regulation in the chromosome of the evolved strain. Published by AIP Publishing.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Rational and Evolutionary Engineering Approaches Uncover a Small Set of Genetic Changes Efficient for Rapid Xylose Fermentation in Saccharomyces cerevisiae
    Kim, Soo Rin
    Skerker, Jeffrey M.
    Kang, Wei
    Lesmana, Anastashia
    Wei, Na
    Arkin, Adam P.
    Jin, Yong-Su
    PLOS ONE, 2013, 8 (02):
  • [2] Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption
    Scalcinati, Gionata
    Otero, Jose Manuel
    Van Vleet, Jennifer R. H.
    Jeffries, Thomas W.
    Olsson, Lisbeth
    Nielsen, Jens
    FEMS YEAST RESEARCH, 2012, 12 (05) : 582 - 597
  • [3] Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: Reflections and perspectives
    Cai, Zhen
    Zhang, Bo
    Li, Yin
    BIOTECHNOLOGY JOURNAL, 2012, 7 (01) : 34 - 46
  • [4] Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose
    Sonderegger, M
    Sauer, U
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (04) : 1990 - 1998
  • [5] Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation:: a proof of principle
    Kuyper, M
    Winkler, AA
    van Dijken, JP
    Pronk, JT
    FEMS YEAST RESEARCH, 2004, 4 (06) : 655 - 664
  • [6] Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose.
    Sonderegger, M
    Sauer, U
    YEAST, 2003, 20 : S226 - S226
  • [7] Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose
    Oh, Eun Joong
    Jin, Yong-Su
    FEMS YEAST RESEARCH, 2020, 20 (01)
  • [8] Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase
    Smith, Justin
    van Rensburg, Eugene
    Goergens, Johann F.
    BMC BIOTECHNOLOGY, 2014, 14
  • [9] XYLOSE FERMENTATION BY SACCHAROMYCES-CEREVISIAE
    KOTTER, P
    CIRIACY, M
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1993, 38 (06) : 776 - 783
  • [10] Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae
    Qi, Xin
    Zha, Jian
    Liu, Gao-Gang
    Zhang, Weiwen
    Li, Bing-Zhi
    Yuan, Ying-Jin
    FRONTIERS IN MICROBIOLOGY, 2015, 6