Specifying and detecting spatio-temporal events in the internet of things

被引:15
|
作者
Jin, Beihong [1 ]
Zhuo, Wei [1 ]
Hu, Jiafeng [1 ]
Chen, Haibiao [1 ]
Yang, Yuwei [1 ]
机构
[1] Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatio-temporal events; Pub/Sub; Event detection; Composite subscriptions; FRAMEWORK;
D O I
10.1016/j.dss.2013.01.027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many applications in the Internet of Things (IoT) depend on the occurrences of events with temporal and spatial constraints to determine the further actions. A major challenge encountered is how to specify and detect the spatio-temporal events. The paper adopts Pub/Sub middleware to help IoT applications to capture spatio-temporal events. Specifically, the paper presents a composite subscription language CPSL and builds the corresponding Pub/Sub middleware Grus. The subscriptions in CPSL can specify diverse temporal, spatial and logical relationships of events, in particular, can describe the moving events related to mobile objects, and Grus is responsible for detecting whether events are matched with subscriptions in a distributed way. In addition, Grus provides the optimization strategies for subscriptions involving unary spatial operators. The paper also evaluates Grus's matching performance and costs through simulation experiments. The experimental results show that Grus can achieve satisfying performance and acceptable overheads, and the optimization strategies can efficiently speed up the detection of spatial events. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:256 / 269
页数:14
相关论文
共 50 条
  • [41] Detecting Taxi Trajectory Anomaly Based on Spatio-Temporal Relations
    Qian, Shiyou
    Cheng, Bin
    Cao, Jian
    Xue, Guangtao
    Zhu, Yanmin
    Yu, Jiadi
    Li, Minglu
    Zhang, Tao
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 6883 - 6894
  • [42] Detecting spatio-temporal outliers in climate dataset: A method study
    Sun, YX
    Xie, KQ
    Ma, XJ
    Jin, XX
    Wen, P
    Gao, XP
    [J]. IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 760 - 763
  • [43] A Multi-color Spatio-Temporal Approach For Detecting DeepFake
    Waseem, Saima
    Abu-Bakar, Syed R.
    Omar, Zaid
    Ahmed, Bilal Ashfaq
    Baloch, Saba
    [J]. 2022 12TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS (ICPRS), 2022,
  • [44] Detecting localized homogeneous anomalies over spatio-temporal data
    Aditya Telang
    P. Deepak
    Salil Joshi
    Prasad Deshpande
    Ranjana Rajendran
    [J]. Data Mining and Knowledge Discovery, 2014, 28 : 1480 - 1502
  • [45] Detecting Regions of Maximal Divergence for Spatio-Temporal Anomaly Detection
    Barz, Bjorn
    Rodner, Erik
    Garcia, Yanira Guanche
    Denzler, Joachim
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (05) : 1088 - 1101
  • [46] Spatio-Temporal Prediction of Suspect Location by Spatio-Temporal Semantics
    Duan, Lian
    Hu, Tao
    Zhu, Xinyan
    Ye, Xinyue
    Wang, Shaohua
    [J]. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2019, 44 (05): : 765 - 770
  • [47] Robust Spatio-Temporal Tensor Recovery for Internet Traffic Data
    Zhou, Huibin
    Zhang, Dafang
    Xie, Kun
    Chen, Yuxiang
    [J]. 2016 IEEE TRUSTCOM/BIGDATASE/ISPA, 2016, : 1404 - 1411
  • [48] ESRML-ST: A Language for Specifying Spatio-Temporal Information Security Requirements of Enterprises
    Manna, Asmita
    Sengupta, Anirban
    Mazumdar, Chandan
    [J]. 2013 INTERNATIONAL CONFERENCE ON CLOUD & UBIQUITOUS COMPUTING & EMERGING TECHNOLOGIES (CUBE 2013), 2013, : 150 - +
  • [49] Visual Reasoning for Uncertainty in Spatio-Temporal Events of Historical Figures
    Zhang, Wei
    Tan, Siwei
    Chen, Siming
    Meng, Linghao
    Zhang, Tianye
    Zhu, Rongchen
    Chen, Wei
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (06) : 3009 - 3023
  • [50] Spatio-temporal Data Model Based on Historical Events of Beijing
    Dai, Hong
    [J]. 2010 18TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2010,