High Performance Sn-In Cathode for the Electrochemical Reduction of Carbon Dioxide to Formic Acid

被引:6
|
作者
Li, Fajun [1 ,2 ]
Zhang, Hua [1 ]
Ji, Shuai [1 ]
Liu, Wei [3 ]
Zhang, Dong [1 ]
Zhang, Chengdu [1 ]
Yang, Jing [1 ]
Yang, Fei [1 ]
Lei, Lixu [1 ,2 ]
机构
[1] Southeast Univ, Sch Chem & Chem Engn, Nanjing 211189, Jiangsu, Peoples R China
[2] Jiangsu Key Lab Adv Metall Mat, Nanjing 211189, Jiangsu, Peoples R China
[3] Shuangdeng Grp Co Ltd, Key Lab Electrochem Energy Storage Technol Jiangs, Taizhou 225300, Jiangsu, Peoples R China
来源
关键词
Electrochemical reduction; carbon dioxide; formate; tin-indium bimetallic catalyst; space time yield; PHOTOELECTRON-SPECTROSCOPY; METAL-ELECTRODES; CO2; REDUCTION; FORMATE; SELECTIVITY; EFFICIENCY; CONVERSION; CATALYSTS; ALLOY;
D O I
10.20964/2019.05.44
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Both Sn and In have been potentiostatically co-deposited on the surface of Cu foam at different potentials to prepare Sn-In bimetallic electrodes. Among them, the Sn42In58 electrode has excellent catalytic activity towards CO2 reduction to formic acid. At -1.6 V versus Ag/AgCl, the formate Faradaic efficiency reaches its maximum, 88%; and its space time yield reaches 309 mu mol h(-1) cm(-2) at -1.8 V versus Ag/AgCl. When it is used in the biomimetic electrochemical cell reported previously by us, a much higher space time yield, 468 mu mol h(-1) cm(-2) is obtained.
引用
收藏
页码:4161 / 4172
页数:12
相关论文
共 50 条
  • [41] Electrochemical reduction of carbon dioxide III. The role of oxide layer thickness on the performance of Sn electrode in a full electrochemical cell
    Wu, Jingjie
    Risalvato, Frank G.
    Ma, Shuguo
    Zhou, Xiao-Dong
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (06) : 1647 - 1651
  • [42] MECHANISM OF REDUCTION OF SULPHUR DIOXIDE BY FORMIC ACID
    GOLIATH, M
    LINDGREN, BO
    [J]. ACTA CHEMICA SCANDINAVICA, 1962, 16 (03): : 570 - &
  • [43] Electrodeposited Sn-Cu@Sn dendrites for selective electrochemical CO2 reduction to formic acid
    Lim, Jinkyu
    Garcia-Esparza, Angel T.
    Lee, Jae Won
    Kang, Gihun
    Shin, Sangyong
    Jeon, Sun Seo
    Lee, Hyunjoo
    [J]. NANOSCALE, 2022, 14 (26) : 9297 - 9303
  • [44] Insight on Performance Degradation of Phthalocyanine Cobalt-Based Gas Diffusion Cathode for Carbon Dioxide Electrochemical Reduction
    Wan, Qiqi
    Liu, Yingying
    Ke, Changchun
    Zhang, Yang
    Jiang, Wenxing
    Qu, Yang
    Zhang, Longhai
    Li, Jin
    Gui, Jie
    Hou, Junbo
    Xia, Guofeng
    Yin, Jiewei
    Zhang, Junliang
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (51) : 17214 - 17220
  • [45] The electrochemical reduction of carbon dioxide
    Shaw, Scott K.
    Schiffrin, David J.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [46] Electrochemical reduction of carbon dioxide
    Maass, Mona Christin
    Lanfermann, Philipp
    Waitz, Thomas
    [J]. CHEMKON, 2024, 31 (06) : 232 - 234
  • [47] Electrochemical reduction of carbon dioxide
    Miles, Melvin H.
    [J]. CARBON DIOXIDE REDUCTION METALLURGY, 2008, : 129 - 133
  • [48] Direct homogeneous catalytic carbon dioxide hydrogenation to formic acid: The reversible formic acid - carbon dioxide/hydrogen cycle
    Laurenczy, Gabor
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [49] Reaction Mechanisms of the Electrochemical Conversion of Carbon Dioxide to Formic Acid on Tin Oxide Electrodes
    Lee, Chan Woo
    Cho, Nam Heon
    Yang, Ki Dong
    Nam, Ki Tae
    [J]. CHEMELECTROCHEM, 2017, 4 (09): : 2130 - 2136
  • [50] Electrochemical production of formic acid from carbon dioxide: A life cycle assessment study
    Kang, Dongseong
    Byun, Jaewon
    Han, Jeehoon
    [J]. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (05):