On the distribution of square-full numbers in arithmetic progressions

被引:6
|
作者
Liu, Huaning [1 ]
Zhang, Ting [1 ]
机构
[1] NW Univ Xian, Dept Math, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Square-full number; Arithmetic progression; Perron's formula; DIRICHLET L-FUNCTIONS; HYBRID BOUNDS; INTEGERS;
D O I
10.1007/s00013-013-0525-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A positive integer n is called a square-full number if p (2) divides n whenever p is a prime divisor of n. In this paper we study the distribution of square-full numbers in arithmetic progressions by using the properties of Riemann zeta functions and Dirichlet L-functions.
引用
收藏
页码:53 / 64
页数:12
相关论文
共 50 条
  • [41] SQUAREFREE NUMBERS IN ARITHMETIC PROGRESSIONS
    WARLIMONT, R
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 22 (AUG): : 21 - 24
  • [42] Arithmetic progressions in squarefull numbers
    Bajpai, Prajeet
    Bennett, Michael A.
    Chan, Tsz Ho
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (01) : 19 - 45
  • [43] SQUAREFREE NUMBERS IN ARITHMETIC PROGRESSIONS
    WARLIMONT, R
    [J]. MONATSHEFTE FUR MATHEMATIK, 1972, 76 (03): : 272 - +
  • [44] ON CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS
    Banks, William D.
    Pomerance, Carl
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 88 (03) : 313 - 321
  • [45] Squarefree numbers in arithmetic progressions
    Nunes, Ramon M.
    [J]. JOURNAL OF NUMBER THEORY, 2015, 153 : 1 - 36
  • [46] CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS
    Matomaki, Kaisa
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 94 (02) : 268 - 275
  • [47] ON SQUAREFREE NUMBERS IN ARITHMETIC PROGRESSIONS
    WARLIMONT, R
    [J]. MONATSHEFTE FUR MATHEMATIK, 1969, 73 (05): : 433 - +
  • [48] Average distribution of k-free numbers in arithmetic progressions
    Liu, Kui
    Shparlinski, Igor E.
    Zhang, Tianping
    [J]. MATHEMATISCHE NACHRICHTEN, 2020, 293 (08) : 1505 - 1514
  • [49] On the Distribution of the Numbers with Binary Expansions of a Special Type in Arithmetic Progressions
    Naumenko, A. P.
    [J]. IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2008, 8 (04): : 34 - 37
  • [50] Full powers in arithmetic progressions
    Pink, I
    Tengely, S
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 57 (3-4): : 535 - 545