Uncertainty Analysis and Parameter Estimation for the CSM-CROPGRO-Cotton Model

被引:39
|
作者
Pathak, Tapan B. [1 ]
Jones, James W. [2 ]
Fraisse, Clyde W. [2 ]
Wright, David [3 ]
Hoogenboom, Gerit [4 ]
机构
[1] Univ Nebraska, Sch Nat Resources, Lincoln, NE 68198 USA
[2] Univ Florida, Dep Agr & Biol Engn, Gainesville, FL USA
[3] Univ Florida, N Florida Educ & Res Ctr, Quincy, FL USA
[4] Washington State Univ, AgWeatherNet, Prosser, WA USA
关键词
DATA ASSIMILATION; GLUE; GROWTH; EQUIFINALITY; SYSTEM; PHOTOSYNTHESIS; SENSITIVITY; CALIBRATION; SIMULATION; NITROGEN;
D O I
10.2134/agronj2011.0349
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The Cropping System Model (CSM)-CROPGRO-Cotton model simulates growth, development, and yield for cotton (Gossypium hirsutum L.) and requires a large number of parameters and inputs. It is practically impossible to estimate all the parameters with a high level of accuracy. The objectives of this study were to estimate values and uncertainties of the CSM-CROPGRO-Cotton model genotype parameters and resulting uncertainties in the cotton growth and development model and to evaluate the model performance by comparing model predictions based on the estimated parameters using generalized likelihood uncertainty estimation (GLUE) with those based on a prior distribution and the default model parameters. Observations for this study were collected from four experiments at Quincy, FL, Citra, FL, and Griffin, GA, for Delta Pinc 555 cotton. The results show that the estimated parameters improved model performance compared with default parameters. There was a noticeable reduction in parameter uncertainties and resulting model output uncertainties. Resulting uncertainty in model predictions of leaf area index, leaf weight, stem weight, and boll weight were reduced to 4 to 13% with posterior and 29 to 56% prior parameters, partially due to improved estimates and a considerable reduction in the uncertainty of the important model parameters such as the light extinction coefficient and specific leaf area. The GLUE technique improved the model performance by improving estimated values of model parameters, reducing model parameter uncertainties, and reducing model output uncertainties.
引用
收藏
页码:1363 / 1373
页数:11
相关论文
共 50 条
  • [21] Determining water-use-efficient irrigation strategies for cotton using the DSSAT CSM CROPGRO-cotton model evaluated with in-season data
    Garibay, Victoria M.
    Kothari, Kritika
    Ale, Srinivasulu
    Gitz, Dennis C., III
    Morgan, Gaylon D.
    Munster, Clyde L.
    [J]. AGRICULTURAL WATER MANAGEMENT, 2019, 223
  • [22] Remotely sensed vegetation index and LAI for parameter determination of the CSM-CROPGRO-Soybean model when in situ data are not available
    Richetti, Jonathan
    Boote, Kenneth J.
    Hoogenboom, Gerrit
    Judge, Jasmeet
    Johann, Jerry A.
    Uribe-Opazo, Miguel A.
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 79 : 110 - 115
  • [23] Evaluation of water schemes for peanut, using CSM-CROPGRO-Peanut model
    Amiri, E.
    Gohari, A. Abdzad
    Mianabadi, A.
    [J]. ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2015, 61 (10) : 1439 - 1453
  • [24] PARAMETER ESTIMATION AND UNCERTAINTY QUANTIFICATION FOR AN EPIDEMIC MODEL
    Capaldi, Alex
    Behrend, Samuel
    Berman, Benjamin
    Smith, Jason
    Wright, Justin
    Lloyd, Alun L.
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2012, 9 (03) : 553 - 576
  • [25] Interval parameter estimation under model uncertainty
    Nazin, SA
    Polyak, BT
    [J]. MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2005, 11 (02) : 225 - 237
  • [26] Probabilistic inversion of a terrestrial ecosystem model: Analysis of uncertainty in parameter estimation and model prediction
    Xu, T
    White, L
    Hui, DF
    Luo, YQ
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2006, 20 (02)
  • [27] Parameter estimation and uncertainty analysis in hydrological modeling
    Herrera, Paulo A.
    Marazuela, Miguel Angel
    Hofmann, Thilo
    [J]. WILEY INTERDISCIPLINARY REVIEWS-WATER, 2022, 9 (01):
  • [28] Uncertainty Analysis in Photovoltaic Cell Parameter Estimation
    Attivissimo, Filippo
    Di Nisio, Attilio
    Savino, Mario
    Spadavecchia, Maurizio
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2012, 61 (05) : 1334 - 1342
  • [29] Ellipsoidal parameter or state estimation under model uncertainty
    Polyak, BT
    Nazin, SA
    Durieu, C
    Walter, E
    [J]. AUTOMATICA, 2004, 40 (07) : 1171 - 1179
  • [30] Estimation of upper quantiles under model and parameter uncertainty
    Modarres, R
    Nayak, TK
    Gastwirth, JL
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (04) : 529 - 554