Estimation of upper quantiles under model and parameter uncertainty

被引:16
|
作者
Modarres, R [1 ]
Nayak, TK [1 ]
Gastwirth, JL [1 ]
机构
[1] George Washington Univ, Dept Stat, Washington, DC 20052 USA
关键词
quantile estimation; model uncertainty; parameter uncertainty; model selection; likelihood; tail-exponential; log-symmetric; Monte Carlo simulation;
D O I
10.1016/S0167-9473(01)00094-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we assess accuracy of some commonly used estimators of upper quantiles of a right skewed distribution under both parameter and model uncertainty. In particular, for each of log-normal, log-logistic, and log-double exponential distributions, we study the bias and mean squared error of the maximum likelihood estimator (MLE) of the upper quantiles under both the correct and incorrect model specifications. We also consider two data dependent or adaptive estimators. The first (tail-exponential) is based on fitting an exponential distribution to the highest 10-20 percent of the data. The second selects the best fitting likelihood-based model and uses the MLE obtained from that model. The simulation results provide some practical guidance concerning the estimation of the upper quantiles when one is uncertain about the underlying model. We found that the consequences of assuming log-normality when the true distribution is log-logistic or log-double exponential are not severe in moderate sample sizes. For extreme quantiles, no estimator was reliable in small samples. For large sample sizes the selection estimator performs fairly well. For small sample sizes the tail-exponential method is a good alternative. Presenting it and the MLE for the log-normal enables one to assess the potential effects of model uncertainty. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:529 / 554
页数:26
相关论文
共 50 条
  • [1] Interval parameter estimation under model uncertainty
    Nazin, SA
    Polyak, BT
    [J]. MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2005, 11 (02) : 225 - 237
  • [2] Ellipsoidal parameter or state estimation under model uncertainty
    Polyak, BT
    Nazin, SA
    Durieu, C
    Walter, E
    [J]. AUTOMATICA, 2004, 40 (07) : 1171 - 1179
  • [3] On accuracy of upper quantiles estimation
    Markiewicz, I.
    Strupczewski, W. G.
    Kochanek, K.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2010, 14 (11) : 2167 - 2175
  • [4] Estimation of parameter uncertainty in the HBV model
    Seibert, J
    [J]. NORDIC HYDROLOGY, 1997, 28 (4-5) : 247 - 262
  • [5] Parameter estimation and uncertainty analysis of SWAT model in upper reaches of the Heihe river basin
    Li, Zhanling
    Xu, Zongxue
    Shao, Quanxi
    Yang, Jing
    [J]. HYDROLOGICAL PROCESSES, 2009, 23 (19) : 2744 - 2753
  • [6] ESTIMATION UNDER MODEL UNCERTAINTY
    Longford, Nicholas T.
    [J]. STATISTICA SINICA, 2017, 27 (02) : 859 - 877
  • [7] Parameter estimation and uncertainty analysis for a watershed model
    Gallagher, Mark
    Doherty, John
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2007, 22 (07) : 1000 - 1020
  • [8] PARAMETER ESTIMATION AND UNCERTAINTY QUANTIFICATION FOR AN EPIDEMIC MODEL
    Capaldi, Alex
    Behrend, Samuel
    Berman, Benjamin
    Smith, Jason
    Wright, Justin
    Lloyd, Alun L.
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2012, 9 (03) : 553 - 576
  • [9] Evaluating model reduction under parameter uncertainty
    Froysa, Havard G.
    Fallahi, Shirin
    Blaser, Nello
    [J]. BMC SYSTEMS BIOLOGY, 2018, 12
  • [10] Diversification limit of quantiles under dependence uncertainty
    Bignozzi, Valeria
    Mao, Tiantian
    Wang, Bin
    Wang, Ruodu
    [J]. EXTREMES, 2016, 19 (02) : 143 - 170