Regressograms and Mean-Covariance Models for Incomplete Longitudinal Data

被引:4
|
作者
Garcia, Tanya P. [1 ]
Kohli, Priya [1 ]
Pourahmadi, Mohsen [1 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
来源
AMERICAN STATISTICIAN | 2012年 / 66卷 / 02期
基金
美国国家科学基金会;
关键词
Covariance structure; Expectation-maximization; Graphical tools; Missing data; Regressograms; MATRIX;
D O I
10.1080/00031305.2012.695935
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Longitudinal studies are prevalent in biological and social sciences where subjects are measured repeatedly over time. Modeling the correlations and handling missing data are among the most challenging problems in analyzing such data. There are various methods for handling missing data, but data-based and graphical methods for modeling the covariance matrix of longitudinal data are relatively new. We adopt an approach based on the modified Cholesky decomposition of the covariance matrix which handles both challenges. It amounts to formulating parametric models for the regression coefficients of the conditional mean and variance of each measurement given its predecessors. We demonstrate the roles of profile plots and regressograms in formulating joint mean-covariance models for incomplete longitudinal data. Applying these graphical tools to the Fruit Fly Mortality (FFM) data, which has 22% missing values, reveals a logistic curve for the mean function and two different models for the two factors of the modified Cholesky decomposition of the sample covariance matrix. An expectation-maximization algorithm is proposed for estimating the parameters of the mean-covariance models; it performs well for the FFM data and in a simulation study of incomplete longitudinal data.
引用
收藏
页码:85 / 91
页数:7
相关论文
共 50 条
  • [21] Robust maximum L9-likelihood estimation of joint mean-covariance models for longitudinal data
    Xu, Lin
    Xiang, Sijia
    Yao, Weixin
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 171 : 397 - 411
  • [22] Joint estimation of mean-covariance model for longitudinal data with basis function approximations
    Mao, Jie
    Zhu, Zhongyi
    Fung, Wing K.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (02) : 983 - 992
  • [23] Robust variable selection in semiparametric mean-covariance regression for longitudinal data analysis
    Guo, Chaohui
    Yang, Hu
    Lv, Jing
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 245 : 343 - 356
  • [24] Joint semiparametric mean-covariance model in longitudinal study
    Mao Jie
    Zhu ZhongYi
    [J]. SCIENCE CHINA-MATHEMATICS, 2011, 54 (01) : 145 - 164
  • [25] Joint semiparametric mean-covariance model in longitudinal study
    Jie Mao
    ZhongYi Zhu
    [J]. Science China Mathematics, 2011, 54 : 145 - 164
  • [26] Semiparametric Bayesian Inference for Mean-Covariance Regression Models
    Han Jun YU
    Jun Shan SHEN
    Zhao Nan LI
    Xiang Zhong FANG
    [J]. Acta Mathematica Sinica,English Series, 2017, (06) : 748 - 760
  • [27] Semiparametric Bayesian Inference for Mean-Covariance Regression Models
    Han Jun YU
    Jun Shan SHEN
    Zhao Nan LI
    Xiang Zhong FANG
    [J]. ActaMathematicaSinica, 2017, 33 (06) : 748 - 760
  • [28] A moving average Cholesky factor model in joint mean-covariance modeling for longitudinal data
    Liu XiaoYu
    Zhang WeiPing
    [J]. SCIENCE CHINA-MATHEMATICS, 2013, 56 (11) : 2367 - 2379
  • [29] A moving average Cholesky factor model in joint mean-covariance modeling for longitudinal data
    LIU XiaoYu
    ZHANG WeiPing
    [J]. Science China Mathematics, 2013, 56 (11) : 2367 - 2379
  • [30] Semiparametric Bayesian Inference for Mean-Covariance Regression Models
    Yu, Han Jun
    Shen, Jun Shan
    Li, Zhao Nan
    Fang, Xiang Zhong
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (06) : 748 - 760