Nontrivial large-time behaviour in bistable reaction-diffusion equations

被引:35
|
作者
Roquejoffre, Jean-Michel [1 ,2 ]
Roussier-Michon, Violaine [3 ]
机构
[1] Univ Toulouse 3, Inst Math, CNRS, UMR 5219, F-31062 Toulouse 4, France
[2] Univ Toulouse 3, Inst Univ, F-31062 Toulouse 4, France
[3] INSA Toulouse, CNRS, UMR 5219, Inst Math, F-31077 Toulouse 4, France
关键词
Reaction-diffusion equations; Travelling fronts; Nontrivial dynamics; TRAVELING-WAVES; MULTIDIMENSIONAL STABILITY; CURVATURE FLOWS; FRONTS; CONVERGENCE; EXISTENCE;
D O I
10.1007/s10231-008-0072-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Bistable reaction-diffusion equations are known to admit one-dimensional travelling waves which are globally stable to one-dimensional perturbations-Fife and McLeod [7]. These planar waves are also stable to two-dimensional perturbations-Xin [30], Levermore-Xin [19], Kapitula [16]-provided that these perturbations decay, in the direction transverse to the wave, in an integrable fashion. In this paper, we first prove that this result breaks down when the integrability condition is removed, and we exhibit a large-time dynamics similar to that of the heat equation. We then apply this result to the study of the large-time behaviour of conical-shaped fronts in the plane, and exhibit cases where the dynamics is given by that of two advection-diffusion equations.
引用
收藏
页码:207 / 233
页数:27
相关论文
共 50 条
  • [21] Generalized fronts in reaction-diffusion equations with bistable nonlinearity
    Shu, Ya Qin
    Li, Wan Tong
    Liu, Nai Wei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (08) : 1633 - 1646
  • [22] Generalized fronts in reaction-diffusion equations with bistable nonlinearity
    Ya Qin Shu
    Wan Tong Li
    Nai Wei Liu
    Acta Mathematica Sinica, English Series, 2012, 28 : 1633 - 1646
  • [23] HETEROCLINIC CONNECTIONS FOR MULTIDIMENSIONAL BISTABLE REACTION-DIFFUSION EQUATIONS
    Hamel, Francois
    Roquejoffre, Jean-Michel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (01): : 101 - 123
  • [24] BIFURCATIONS AND LARGE-TIME ASYMPTOTIC-BEHAVIOR FOR PREY-PREDATOR REACTION-DIFFUSION EQUATIONS WITH DIRICHLET BOUNDARY DATA
    LEUNG, A
    CLARK, D
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 35 (01) : 113 - 127
  • [25] Large time behavior of reaction-diffusion equations with Bessel generators
    Alfredo Lopez-Mimbela, Jose
    Privault, Nicolas
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 383 (02) : 560 - 572
  • [26] Large time monotonicity of solutions of reaction-diffusion equations in RN
    Grenier, Emmanuel
    Hamel, Francois
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 112 : 89 - 117
  • [27] Large-time dynamics in complex networks of reaction-diffusion systems applied to a panic model
    Cantin, Guillaume
    Aziz-Alaoui, M. A.
    Verdiere, Nathalie
    IMA JOURNAL OF APPLIED MATHEMATICS, 2019, 84 (05) : 974 - 1000
  • [28] Large-time solutions of a class of scalar, nonlinear hyperbolic reaction–diffusion equations
    J. A. Leach
    Andrew P. Bassom
    Journal of Engineering Mathematics, 2021, 130
  • [29] Front propagation and blocking of time periodic bistable reaction-diffusion equations in cylindrical domains
    Wei-Jie Sheng
    Mingxin Wang
    Zhi-Cheng Wang
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [30] Front propagation and blocking of time periodic bistable reaction-diffusion equations in cylindrical domains
    Sheng, Wei-Jie
    Wang, Mingxin
    Wang, Zhi-Cheng
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (06)