Nontrivial large-time behaviour in bistable reaction-diffusion equations

被引:35
|
作者
Roquejoffre, Jean-Michel [1 ,2 ]
Roussier-Michon, Violaine [3 ]
机构
[1] Univ Toulouse 3, Inst Math, CNRS, UMR 5219, F-31062 Toulouse 4, France
[2] Univ Toulouse 3, Inst Univ, F-31062 Toulouse 4, France
[3] INSA Toulouse, CNRS, UMR 5219, Inst Math, F-31077 Toulouse 4, France
关键词
Reaction-diffusion equations; Travelling fronts; Nontrivial dynamics; TRAVELING-WAVES; MULTIDIMENSIONAL STABILITY; CURVATURE FLOWS; FRONTS; CONVERGENCE; EXISTENCE;
D O I
10.1007/s10231-008-0072-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Bistable reaction-diffusion equations are known to admit one-dimensional travelling waves which are globally stable to one-dimensional perturbations-Fife and McLeod [7]. These planar waves are also stable to two-dimensional perturbations-Xin [30], Levermore-Xin [19], Kapitula [16]-provided that these perturbations decay, in the direction transverse to the wave, in an integrable fashion. In this paper, we first prove that this result breaks down when the integrability condition is removed, and we exhibit a large-time dynamics similar to that of the heat equation. We then apply this result to the study of the large-time behaviour of conical-shaped fronts in the plane, and exhibit cases where the dynamics is given by that of two advection-diffusion equations.
引用
收藏
页码:207 / 233
页数:27
相关论文
共 50 条
  • [11] Pulsating fronts for bistable on average reaction-diffusion equations in a time periodic environment
    Contri, Benjamin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 437 (01) : 90 - 132
  • [12] CONVERGENCE TO TRAVELING WAVES FOR TIME-PERIODIC BISTABLE REACTION-DIFFUSION EQUATIONS
    Ding, Weiwei
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (04) : 1647 - 1661
  • [13] Transition fronts for periodic bistable reaction-diffusion equations
    Weiwei Ding
    François Hamel
    Xiao-Qiang Zhao
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 2517 - 2551
  • [14] Transition fronts of time periodic bistable reaction-diffusion equations around an obstacle
    Sheng, Wei-Jie
    Li, Linlin
    Wang, Zhi-Cheng
    Wang, Mingxin
    JOURNAL D ANALYSE MATHEMATIQUE, 2024,
  • [15] Time periodic traveling curved fronts of bistable reaction-diffusion equations in RN
    Sheng, Wei-Jie
    APPLIED MATHEMATICS LETTERS, 2016, 54 : 22 - 30
  • [16] Generalized Fronts in Reaction-Diffusion Equations with Bistable Nonlinearity
    Ya Qin SHU
    Wan Tong LI
    Nai Wei LIU
    Acta Mathematica Sinica, 2012, 28 (08) : 1633 - 1646
  • [17] FRONT PROPAGATION FOR REACTION-DIFFUSION EQUATIONS OF BISTABLE TYPE
    BARLES, G
    BRONSARD, L
    SOUGANIDIS, PE
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05): : 479 - 496
  • [18] Generalized Fronts in Reaction-Diffusion Equations with Bistable Nonlinearity
    Ya Qin SHU
    Wan Tong LI
    Nai Wei LIU
    Acta Mathematica Sinica,English Series, 2012, (08) : 1633 - 1646
  • [19] ASYMPTOTIC BEHAVIOR OF NONLOCAL BISTABLE REACTION-DIFFUSION EQUATIONS
    Besse, Christophe
    Capel, Alexandre
    Faye, Gregory
    Fouilhe, Guilhem
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (12): : 5967 - 5997
  • [20] Uniqueness of wave speeds in bistable reaction-diffusion equations
    Huang, Yanli
    Lin, Guo
    Pan, Shuxia
    APPLIED MATHEMATICS LETTERS, 2022, 125