Counting semisimple orbits of finite Lie algebras by genus

被引:3
|
作者
Fulman, J [1 ]
机构
[1] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
关键词
D O I
10.1006/jabr.1998.7805
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The adjoint action of a finite group of Lie type on its Lie algebra is studied. A simple formula is conjectured for the number of semisimple orbits of a given split genus. This conjecture, is proved for type A, and partial results are obtained for other types. For type A a probabilistic interpretation is given in terms of card shuffling. (C) 1999 Academic Press.
引用
下载
收藏
页码:170 / 179
页数:10
相关论文
共 50 条
  • [31] Uniqueness of addition in semisimple Lie algebras
    Arzhantsev, IV
    RUSSIAN MATHEMATICAL SURVEYS, 2001, 56 (03) : 569 - 571
  • [32] An algorithm for the decomposition of semisimple Lie algebras
    deGraaf, WA
    THEORETICAL COMPUTER SCIENCE, 1997, 187 (1-2) : 117 - 122
  • [33] Semisimple Lie Algebras of Differential Operators
    David A. Richter
    Acta Applicandae Mathematica, 2001, 66 : 41 - 65
  • [34] Cyclic elements in semisimple lie algebras
    A. G. Elashvili
    V. G. Kac
    E. B. Vinberg
    Transformation Groups, 2013, 18 : 97 - 130
  • [35] Filtrations in semisimple lie algebras, II
    Barnea, Y.
    Passman, D. S.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (02) : 801 - 817
  • [36] THE SEMISIMPLE SUBALGEBRAS OF LIE-ALGEBRAS
    FELDMAN, G
    FULTON, T
    MATTHEWS, PT
    JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (05) : 1230 - 1252
  • [37] Decomposition varieties in semisimple Lie algebras
    Broer, A
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (05): : 929 - 971
  • [38] An evaluation on Real Semisimple Lie Algebras
    MENG DaojiDepartment of Mathematics
    Science Bulletin, 2000, (09) : 861 - 864
  • [39] Integrable triples in semisimple Lie algebras
    De Sole, Alberto
    Jibladze, Mamuka
    Kac, Victor G.
    Valeri, Daniele
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (05)
  • [40] Cyclic elements in semisimple lie algebras
    Elashvili, A. G.
    Kac, V. G.
    Vinberg, E. B.
    TRANSFORMATION GROUPS, 2013, 18 (01) : 97 - 130