Cyclic elements in semisimple lie algebras

被引:0
|
作者
A. G. Elashvili
V. G. Kac
E. B. Vinberg
机构
[1] Razmadze Mathematical Institute,Department of Mathematics
[2] M.I.T.,undefined
[3] Moscow State University,undefined
[4] Department of Mathematics,undefined
来源
Transformation Groups | 2013年 / 18卷
关键词
Conjugacy Class; Weyl Group; Regular Element; Nilpotent Element; Nilpotent Orbit;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a theory of cyclic elements in semisimple Lie algebras. This notion was introduced by Kostant, who associated a cyclic element with the principal nilpotent and proved that it is regular semisimple. In particular, we classfiy all nilpotents giving rise to semisimple and regular semisimple cyclic elements. As an application, we obtain an explicit construction of all regular elements in Weyl groups.
引用
收藏
页码:97 / 130
页数:33
相关论文
共 50 条
  • [1] SEMISIMPLE CYCLIC ELEMENTS IN SEMISIMPLE LIE ALGEBRAS
    Elashvili, A. G.
    Jibladze, M.
    Kac, V. G.
    TRANSFORMATION GROUPS, 2022, 27 (02) : 429 - 470
  • [2] SEMISIMPLE CYCLIC ELEMENTS IN SEMISIMPLE LIE ALGEBRAS
    A. G. ELASHVILI
    M. JIBLADZE
    V. G. KAC
    Transformation Groups, 2022, 27 : 429 - 470
  • [3] Cyclic elements in semisimple lie algebras
    Elashvili, A. G.
    Kac, V. G.
    Vinberg, E. B.
    TRANSFORMATION GROUPS, 2013, 18 (01) : 97 - 130
  • [4] Restricted Lie algebras all whose elements are semisimple
    Chen, Liangyun
    Xu, Xiaoning
    Zhang, Yongzheng
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (01) : 61 - 70
  • [5] Normal forms of nilpotent elements in semisimple Lie algebras
    Jibladze, Mamuka
    Kac, Victor G.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (06): : 1311 - 1331
  • [6] Restricted Lie algebras all whose elements are semisimple
    Liangyun Chen
    Xiaoning Xu
    Yongzheng Zhang
    Frontiers of Mathematics in China, 2011, 6 : 61 - 70
  • [7] SEMISIMPLE RESOLUTION OF SEMISIMPLE LIE ALGEBRAS
    ONISHCHIK, AL
    DOKLADY AKADEMII NAUK SSSR, 1963, 149 (05): : 1033 - &
  • [8] Commutators of Small Elements in Compact Semisimple Groups and Lie Algebras
    D'Andrea, Alessandro
    Maffei, Andrea
    JOURNAL OF LIE THEORY, 2016, 26 (03) : 683 - 690
  • [9] Constructing semisimple subalgebras of semisimple Lie algebras
    de Graaf, Willem A.
    JOURNAL OF ALGEBRA, 2011, 325 (01) : 416 - 430
  • [10] Projections of Semisimple Lie Algebras
    Gein, A. G.
    ALGEBRA AND LOGIC, 2019, 58 (02) : 103 - 114