Production of selenium nanoparticles in Pseudomonas putida KT2440

被引:84
|
作者
Avendano, Roberto [1 ]
Chaves, Nefertiti [1 ]
Fuentes, Paola [2 ,3 ]
Sanchez, Ethel [4 ]
Jimenez, Jose I. [5 ]
Chavarria, Max [1 ,2 ,6 ]
机构
[1] CeNAT CONARE, Ctr Nacl Innovac Biotecnol CENIBiot, San Jose 11741200, Costa Rica
[2] Univ Costa Rica, Escuela Quim, San Jose 115012060, Costa Rica
[3] Univ Costa Rica, Ctr Electroquim & Energia Quim CELEQ, San Jose 115012060, Costa Rica
[4] Univ Costa Rica, Ctr Invest Estruct Microscop CIEMIC, San Jose 115012060, Costa Rica
[5] Univ Surrey, Fac Hlth & Med Sci, Guildford GU2 7XH, Surrey, England
[6] Univ Costa Rica, Ctr Invest Prod Nat CIPRONA, San Jose 115012060, Costa Rica
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
英国生物技术与生命科学研究理事会;
关键词
SELENATE REDUCTION; ELEMENTAL SELENIUM; THAUERA-SELENATIS; ENTNER-DOUDOROFF; BIOSYNTHESIS; NITRATE; RESPIRATION; GLUTATHIONE;
D O I
10.1038/srep37155
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Selenium (Se) is an essential element for the cell that has multiple applications in medicine and technology; microorganisms play an important role in Se transformations in the environment. Here we report the previously unidentified ability of the soil bacterium Pseudomonas putida KT2440 to synthesize nanoparticles of elemental selenium (nano-Se) from selenite. Our results show that P. putida is able to reduce selenite aerobically, but not selenate, to nano-Se. Kinetic analysis indicates that, in LB medium supplemented with selenite (1 mM), reduction to nano- Se occurs at a rate of 0.444 mmol L-1 h(-1) beginning in the middle-exponential phase and with a final conversion yield of 89%. Measurements with a transmission electron microscope (TEM) show that nano- Se particles synthesized by P. putida have a size range of 100 to 500 nm and that they are located in the surrounding medium or bound to the cell membrane. Experiments involving dynamic light scattering (DLS) show that, in aqueous solution, recovered nano- Se particles have a size range of 70 to 360 nm. The rapid kinetics of conversion, easy retrieval of nano- Se and the metabolic versatility of P. putida offer the opportunity to use this model organism as a microbial factory for production of selenium nanoparticles.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Engineering Pseudomonas putida KT2440 for simultaneous degradation of carbofuran and chlorpyrifos
    Gong, Ting
    Liu, Ruihua
    Che, You
    Xu, Xiaoqing
    Zhao, Fengjie
    Yu, Huilei
    Song, Cunjiang
    Liu, Yanping
    Yang, Chao
    MICROBIAL BIOTECHNOLOGY, 2016, 9 (06): : 792 - 800
  • [42] β-oxidation–polyhydroxyalkanoates synthesis relationship in Pseudomonas putida KT2440 revisited
    Si Liu
    Tanja Narancic
    Jia-Lynn Tham
    Kevin E. O’Connor
    Applied Microbiology and Biotechnology, 2023, 107 : 1863 - 1874
  • [43] Response of Pseudomonas putida KT2440 to Increased NADH and ATP Demand
    Ebert, Birgitta E.
    Kurth, Felix
    Grund, Marcel
    Blank, Lars M.
    Schmid, Andreas
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (18) : 6597 - 6605
  • [44] Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization
    Franden, Mary Ann
    Jayakody, Lahiru N.
    Li, Wing-Jin
    Wagner, Neil J.
    Cleveland, Nicholas S.
    Michener, William E.
    Hauer, Bernhard
    Blank, Lars M.
    Wierckx, Nick
    Klebensberger, Janosch
    Beckham, Gregg T.
    METABOLIC ENGINEERING, 2018, 48 : 197 - 207
  • [45] Proteomic Characterization of the Outer Membrane Vesicle of Pseudomonas putida KT2440
    Choi, Chi-Won
    Park, Edmond Changkyun
    Yun, Sung Ho
    Lee, Sang-Yeop
    Lee, Yeol Gyun
    Hong, Yeonhee
    Park, Kyeong Ryang
    Kim, Sang-Hyun
    Kim, Gun-Hwa
    Kim, Seung Il
    JOURNAL OF PROTEOME RESEARCH, 2014, 13 (10) : 4298 - 4309
  • [46] Engineering Strategies Enabled Protocatechuic Acid Production from Lignin by Pseudomonas putida KT2440
    Chen, Zhen
    Liu, He
    Zong, Qiu-Jin
    Liang, Tianxin
    Sun, Jun
    Xu, Tao
    Liu, Zhi-Hua
    Wu, Jianping
    Li, Bing-Zhi
    Yuan, Ying-Jin
    ACS Sustainable Chemistry and Engineering, 2024, 12 (49): : 17726 - 17738
  • [47] Optimized prodigiosin production with Pseudomonas putida KT2440 using parallelized noninvasive online monitoring
    Brehl, Carl
    Brass, Hannah U. C.
    Luechtrath, Clara
    Boeckmann, Lukas
    Ihling, Nina
    Classen, Thomas
    Pietruszka, Joerg
    Buechs, Jochen
    BIOTECHNOLOGY PROGRESS, 2022, 38 (03)
  • [48] A promoter engineering-based strategy enhances polyhydroxyalkanoate production in Pseudomonas putida KT2440
    Zhang, Yiting
    Liu, Honglu
    Liu, Yujie
    Huo, Kaiyue
    Wang, Shufang
    Liu, Ruihua
    Yang, Chao
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 191 : 608 - 617
  • [49] Regulation of the cyclopropane synthase cfaB gene in Pseudomonas putida KT2440
    Pini, Cecilia
    Godoy, Patricia
    Bernal, Patricia
    Ramos, Juan-Luis
    Segura, Ana
    FEMS MICROBIOLOGY LETTERS, 2011, 321 (02) : 107 - 114
  • [50] Controlled autolysis facilitates the polyhydroxyalkanoate recovery in Pseudomonas putida KT2440
    Martinez, Virginia
    Garcia, Pedro
    Luis Garcia, Jose
    Auxiliadora Prieto, Maria
    MICROBIAL BIOTECHNOLOGY, 2011, 4 (04): : 533 - 547