Engineering Pseudomonas putida KT2440 for simultaneous degradation of carbofuran and chlorpyrifos

被引:24
|
作者
Gong, Ting [1 ,2 ]
Liu, Ruihua [1 ,2 ]
Che, You [1 ,2 ]
Xu, Xiaoqing [1 ,2 ]
Zhao, Fengjie [1 ,2 ]
Yu, Huilei [3 ]
Song, Cunjiang [1 ,2 ]
Liu, Yanping [4 ]
Yang, Chao [1 ,2 ]
机构
[1] Nankai Univ, Minist Educ, Key Lab Mol Microbiol & Technol, Tianjin 300071, Peoples R China
[2] Nankai Univ, State Key Lab Med Chem Biol, Tianjin 300071, Peoples R China
[3] East China Univ Sci & Technol, State Key Lab Bioreactor Engn, Shanghai 200237, Peoples R China
[4] Tianjin Med Univ, Gen Hosp, Dept Gynaecol & Obstet, Tianjin 300052, Peoples R China
来源
MICROBIAL BIOTECHNOLOGY | 2016年 / 9卷 / 06期
基金
中国国家自然科学基金;
关键词
DEGRADING BACTERIUM; GAMMA-HEXACHLOROCYCLOHEXANE; METHYL PARATHION; MPD GENE; STRAIN; BIODEGRADATION; BIOREMEDIATION; CLONING; 3,5,6-TRICHLORO-2-PYRIDINOL; MINERALIZATION;
D O I
10.1111/1751-7915.12381
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Currently, chlorpyrifos (CP) and carbofuran are often applied together to control major agricultural pests in many developing countries, in most cases, they are simultaneously detected in agricultural soils. Some cost-effective techniques are required for the remediation of combined pollution caused by multiple pesticides. In this work, we aim at constructing a detectable recombinant microorganism with the capacity to simultaneously degrade CP and carbofuran. To achieve this purpose, CP/carbofuran hydrolase genes and gfp were integrated into the chromosome of a biosafety strain Pseudomonas putida KT2440 using a chromosomal scarless modification strategy with upp as a counter-selectable marker. The toxicity of the hydrolysis products was significantly lower compared with the parent compounds. The recombinant strain could utilize CP or carbofuran as the sole source of carbon for growth. The inoculation of the recombinant strain to soils treated with carbofuran and CP resulted in a higher degradation rate than in noninoculated soils. Introduced green fluorescent protein can be employed as a biomarker to track the recombinant strain during bioremediation. Therefore, the recombinant strain has potential to be applied for insitu bioremediation of soil co-contaminated with carbofuran and CP.
引用
收藏
页码:792 / 800
页数:9
相关论文
共 50 条
  • [1] Engineering Pseudomonas putida KT2440 for the production of isobutanol
    Nitschel, Robert
    Ankenbauer, Andreas
    Welsch, Ilona
    Wirth, Nicolas T.
    Massner, Christoph
    Ahmad, Naveed
    McColm, Stephen
    Borges, Frederic
    Fotheringham, Ian
    Takors, Ralf
    Blombach, Bastian
    ENGINEERING IN LIFE SCIENCES, 2020, 20 (5-6): : 148 - 159
  • [2] Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil
    Zuo, Zhenqiang
    Gong, Ting
    Che, You
    Liu, Ruihua
    Xu, Ping
    Jiang, Hong
    Qiao, Chuanling
    Song, Cunjiang
    Yang, Chao
    BIODEGRADATION, 2015, 26 (03) : 223 - 233
  • [3] Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil
    Zhenqiang Zuo
    Ting Gong
    You Che
    Ruihua Liu
    Ping Xu
    Hong Jiang
    Chuanling Qiao
    Cunjiang Song
    Chao Yang
    Biodegradation, 2015, 26 : 223 - 233
  • [4] Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization
    Franden, Mary Ann
    Jayakody, Lahiru N.
    Li, Wing-Jin
    Wagner, Neil J.
    Cleveland, Nicholas S.
    Michener, William E.
    Hauer, Bernhard
    Blank, Lars M.
    Wierckx, Nick
    Klebensberger, Janosch
    Beckham, Gregg T.
    METABOLIC ENGINEERING, 2018, 48 : 197 - 207
  • [5] Hydroxyectoine is superior to trehalose for anhydrobiotic engineering of Pseudomonas putida KT2440
    Manzanera, M
    de Castro, AG
    Tondervik, A
    Rayner-Brandes, M
    Strom, AR
    Tunnacliffe, A
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (09) : 4328 - 4333
  • [6] Copper and cadmium: responses in Pseudomonas putida KT2440
    Miller, C. D.
    Pettee, B.
    Zhang, C.
    Pabst, M.
    McLean, J. E.
    Anderson, A. J.
    LETTERS IN APPLIED MICROBIOLOGY, 2009, 49 (06) : 775 - 783
  • [7] Production of selenium nanoparticles in Pseudomonas putida KT2440
    Roberto Avendaño
    Nefertiti Chaves
    Paola Fuentes
    Ethel Sánchez
    Jose I. Jiménez
    Max Chavarría
    Scientific Reports, 6
  • [8] Amino Acid Racemization in Pseudomonas putida KT2440
    Radkov, Atanas D.
    Moe, Luke A.
    JOURNAL OF BACTERIOLOGY, 2013, 195 (22) : 5016 - 5024
  • [9] Mechanisms of Resistance to Chloramphenicol in Pseudomonas putida KT2440
    Fernandez, Matilde
    Conde, Susana
    de la Torre, Jesus
    Molina-Santiago, Carlos
    Ramos, Juan-Luis
    Duque, Estrella
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2012, 56 (02) : 1001 - 1009
  • [10] Production of selenium nanoparticles in Pseudomonas putida KT2440
    Avendano, Roberto
    Chaves, Nefertiti
    Fuentes, Paola
    Sanchez, Ethel
    Jimenez, Jose I.
    Chavarria, Max
    SCIENTIFIC REPORTS, 2016, 6