Engineering Pseudomonas putida KT2440 for simultaneous degradation of carbofuran and chlorpyrifos

被引:24
|
作者
Gong, Ting [1 ,2 ]
Liu, Ruihua [1 ,2 ]
Che, You [1 ,2 ]
Xu, Xiaoqing [1 ,2 ]
Zhao, Fengjie [1 ,2 ]
Yu, Huilei [3 ]
Song, Cunjiang [1 ,2 ]
Liu, Yanping [4 ]
Yang, Chao [1 ,2 ]
机构
[1] Nankai Univ, Minist Educ, Key Lab Mol Microbiol & Technol, Tianjin 300071, Peoples R China
[2] Nankai Univ, State Key Lab Med Chem Biol, Tianjin 300071, Peoples R China
[3] East China Univ Sci & Technol, State Key Lab Bioreactor Engn, Shanghai 200237, Peoples R China
[4] Tianjin Med Univ, Gen Hosp, Dept Gynaecol & Obstet, Tianjin 300052, Peoples R China
来源
MICROBIAL BIOTECHNOLOGY | 2016年 / 9卷 / 06期
基金
中国国家自然科学基金;
关键词
DEGRADING BACTERIUM; GAMMA-HEXACHLOROCYCLOHEXANE; METHYL PARATHION; MPD GENE; STRAIN; BIODEGRADATION; BIOREMEDIATION; CLONING; 3,5,6-TRICHLORO-2-PYRIDINOL; MINERALIZATION;
D O I
10.1111/1751-7915.12381
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Currently, chlorpyrifos (CP) and carbofuran are often applied together to control major agricultural pests in many developing countries, in most cases, they are simultaneously detected in agricultural soils. Some cost-effective techniques are required for the remediation of combined pollution caused by multiple pesticides. In this work, we aim at constructing a detectable recombinant microorganism with the capacity to simultaneously degrade CP and carbofuran. To achieve this purpose, CP/carbofuran hydrolase genes and gfp were integrated into the chromosome of a biosafety strain Pseudomonas putida KT2440 using a chromosomal scarless modification strategy with upp as a counter-selectable marker. The toxicity of the hydrolysis products was significantly lower compared with the parent compounds. The recombinant strain could utilize CP or carbofuran as the sole source of carbon for growth. The inoculation of the recombinant strain to soils treated with carbofuran and CP resulted in a higher degradation rate than in noninoculated soils. Introduced green fluorescent protein can be employed as a biomarker to track the recombinant strain during bioremediation. Therefore, the recombinant strain has potential to be applied for insitu bioremediation of soil co-contaminated with carbofuran and CP.
引用
收藏
页码:792 / 800
页数:9
相关论文
共 50 条
  • [21] Initiation of fatty acid biosynthesis in Pseudomonas putida KT2440
    McNaught, Kevin J.
    Kuatsjah, Eugene
    Zahn, Michael
    Prates, Erica T.
    Shao, Huiling
    Bentley, Gayle J.
    Pickford, Andrew R.
    Gruber, Josephine N.
    V. Hestmark, Kelley
    Jacobson, Daniel A.
    Poirier, Brenton C.
    Ling, Chen
    San Marchi, Myrsini
    Michener, William E.
    Nicora, Carrie D.
    Sanders, Jacob N.
    Szostkiewicz, Caralyn J.
    Velickovic, Dusan
    Zhou, Mowei
    Munoz, Nathalie
    Kim, Young-Mo
    Magnuson, Jon K.
    Burnum-Johnson, Kristin E.
    Houk, K. N.
    McGeehan, John E.
    Johnson, Christopher W.
    Beckham, Gregg T.
    METABOLIC ENGINEERING, 2023, 76 : 193 - 203
  • [22] The metabolic cost of flagellar motion in Pseudomonas putida KT2440
    Martinez-Garcia, Esteban
    Nikel, Pablo I.
    Chavarria, Max
    de Lorenzo, Victor
    ENVIRONMENTAL MICROBIOLOGY, 2014, 16 (01) : 291 - 303
  • [23] Preparation of Cyclic Prodiginines by Mutasynthesis in Pseudomonas putida KT2440
    Klein, Andreas Sebastian
    Brass, Hannah Ursula Clara
    Klebl, David Paul
    Classen, Thomas
    Loeschcke, Anita
    Drepper, Thomas
    Sievers, Sonja
    Jaeger, Karl-Erich
    Pietruszka, Joerg
    CHEMBIOCHEM, 2018, 19 (14) : 1545 - 1552
  • [24] Metabolic Engineering of Pseudomonas putida KT2440 for De Novo Biosynthesis of Vanillic Acid
    Li, Jin
    Fu, Jianli
    Shang, Yanzhe
    Wei, Wenping
    Zhang, Ping
    Wang, Xue
    Ye, Bang-Ce
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2024, 72 (08) : 4217 - 4224
  • [25] Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate
    Yang, Jeongmo
    Im, Yeongeun
    Kim, Tae Hwan
    Lee, Myeong Jun
    Cho, Sukhyeong
    Na, Jeong-geol
    Lee, Jinwon
    Oh, Byung-keun
    ENZYME AND MICROBIAL TECHNOLOGY, 2020, 132
  • [26] Metabolic role of aldehyde dehydrogenases in <it>Pseudomonas putida</it> KT2440
    Julian-Sanchez, Adriana
    Castrejon-Gonzaga, Adeli
    Moreno-Hagelsieb, Gabriel
    Munoz-Clares, Rosario
    Riveros-Rosas, Hector
    FASEB JOURNAL, 2020, 34
  • [27] Robustness of Pseudomonas putida KT2440 as a host for ethanol biosynthesis
    Nikel, Pablo I.
    de Lorenzo, Victor
    NEW BIOTECHNOLOGY, 2014, 31 (06) : 562 - 571
  • [28] Improvement in Salt Tolerance Ability of Pseudomonas putida KT2440
    Fan, Min
    Tan, Shuyu
    Wang, Wei
    Zhang, Xuehong
    BIOLOGY-BASEL, 2024, 13 (06):
  • [29] Engineering glucose metabolism for enhanced muconic acid production in Pseudomonas putida KT2440
    Bentley, Gayle J.
    Narayanan, Niju
    Jha, Ramesh K.
    Salvachua, Davinia
    Elmore, Joshua R.
    Peabody, George L.
    Black, Brenna A.
    Ramirez, Kelsey
    De Capite, Annette
    Michener, William E.
    Werner, Allison Z.
    Klingeman, Dawn M.
    Schindel, Heidi S.
    Nelson, Robert
    Foust, Lindsey
    Guss, Adam M.
    Dale, Taraka
    Johnson, Christopher W.
    Beckham, Gregg T.
    METABOLIC ENGINEERING, 2020, 59 : 64 - 75
  • [30] Evolution and engineering of pathways for aromatic O-demethylation in Pseudomonas putida KT2440
    Bleem, Alissa C.
    Kuatsjah, Eugene
    Johnsen, Josefin
    Mohamed, Elsayed T.
    Alexander, William G.
    Kellermyer, Zoe A.
    Carroll, Austin L.
    Rossi, Riccardo
    Schlander, Ian B.
    Peabody, George L.
    Guss, Adam M.
    Feist, Adam M.
    Beckham, Gregg T.
    METABOLIC ENGINEERING, 2024, 84 : 145 - 157