Cramer-Rao bound on the estimation accuracy of complex-valued homogeneous Gaussian random fields

被引:16
|
作者
Francos, JM [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Elect & Comp Engn, IL-84105 Beer Sheva, Israel
关键词
Cramer-Rao bounds; Fisher information; homogeneous random fields; 2-D Wold decomposition;
D O I
10.1109/78.984769
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers the problem of the achievable accuracy in jointly estimating the parameters of a complex-valued two-dimensional (2-D) Gaussian and homogeneous random field from a single observed realization of it. Based on the 2-D Wold decomposition, the field is modeled as a sum of purely indeterministic, evanescent, and harmonic components. Using this parametric model, we first solve a key problem common to many open problems in parametric estimation of homogeneous random fields: that of expressing the field mean and covariance functions in terms of the model parameters. Employing the parametric representation of the observed field mean and covariance, we derive a closed-form expression for the Fisher information matrix (FIM) of complexvalued homogeneous Gaussian random fields with mixed spectral distribution. Consequently, the Cramer-Rao lower bound on the error variance in jointly estimating the model parameters is evaluated.
引用
收藏
页码:710 / 724
页数:15
相关论文
共 50 条
  • [41] Bayesian Cramer-Rao bound for dynamical phase offset estimation
    Bay, S.
    Herzet, C.
    Brossier, J. M.
    Barbot, J. P.
    Renaux, A.
    Geller, B.
    2007 IEEE 8TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, VOLS 1 AND 2, 2007, : 285 - +
  • [42] The 3D Complex Damped Exponential Cramer-Rao Estimation Bound and Algorithms
    Pepin, Matthew
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXVI, 2019, 10987
  • [43] A radar application of a modified Cramer-Rao bound: Parameter estimation in non-Gaussian clutter
    Gini, F
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (07) : 1945 - 1953
  • [44] Cramer-Rao Low Bound Estimation for MSE of SCoSaMP Algorithm
    Wang, Cheng
    Chen, Peng
    Yang, Huahui
    Li, Wanling
    Liu, Deliang
    Meng, Chen
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2019, 463 : 2158 - 2165
  • [45] Cramer-Rao lower bound for parameter estimation in nonlinear systems
    Lin, ZP
    Zou, QY
    Ward, ES
    Ober, RJ
    IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (12) : 855 - 858
  • [46] ON THE CRAMER-RAO BOUND FOR TIME-DELAY AND DOPPLER ESTIMATION
    FRIEDLANDER, B
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1984, 30 (03) : 575 - 580
  • [47] Cramer-Rao Lower Bound for prior-subspace estimation
    Boyer, Remy
    Bouleux, Guillaume
    2006 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP PROCEEDINGS, VOLS 1 AND 2, 2006, : 394 - +
  • [48] Compressive TDOA Estimation: Cramer-Rao Bound and Incoherent Processing
    Cao, Hui
    Chan, Y. T.
    So, Hing Cheung
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (04) : 3326 - 3331
  • [49] On the asymptotic analysis of Cramer-Rao bound for time delay estimation
    Hefei Electronic Engineering Inst, China
    Int Conf Signal Process Proc, (109-112):
  • [50] THE CRAMER-RAO LOWER BOUND FOR DIRECTIONS OF ARRIVAL OF GAUSSIAN CYCLOSTATIONARY SIGNALS
    SCHELL, SV
    GARDNER, WA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (04) : 1418 - 1422