Cramer-Rao bound on the estimation accuracy of complex-valued homogeneous Gaussian random fields

被引:16
|
作者
Francos, JM [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Elect & Comp Engn, IL-84105 Beer Sheva, Israel
关键词
Cramer-Rao bounds; Fisher information; homogeneous random fields; 2-D Wold decomposition;
D O I
10.1109/78.984769
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers the problem of the achievable accuracy in jointly estimating the parameters of a complex-valued two-dimensional (2-D) Gaussian and homogeneous random field from a single observed realization of it. Based on the 2-D Wold decomposition, the field is modeled as a sum of purely indeterministic, evanescent, and harmonic components. Using this parametric model, we first solve a key problem common to many open problems in parametric estimation of homogeneous random fields: that of expressing the field mean and covariance functions in terms of the model parameters. Employing the parametric representation of the observed field mean and covariance, we derive a closed-form expression for the Fisher information matrix (FIM) of complexvalued homogeneous Gaussian random fields with mixed spectral distribution. Consequently, the Cramer-Rao lower bound on the error variance in jointly estimating the model parameters is evaluated.
引用
收藏
页码:710 / 724
页数:15
相关论文
共 50 条
  • [11] Stochastic Cramer-Rao bound for direction estimation in unknown noise fields
    Gershman, AB
    Stoica, P
    Pesavento, M
    Larsson, EG
    IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 2002, 149 (01) : 2 - 8
  • [12] On the Cramer-Rao Bound of Autoregressive Estimation in Noise
    Weruaga, Luis
    Melko, O. Michael
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 373 - 376
  • [13] On the generalized Cramer-Rao bound for the estimation of the location
    Batalama, SN
    Kazakos, D
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (02) : 487 - 492
  • [14] DOPPLER FREQUENCY ESTIMATION AND THE CRAMER-RAO BOUND
    BAMLER, R
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1991, 29 (03): : 385 - 390
  • [15] Cramer-Rao bound for joint estimation problems
    Ijyas, V. P. Thafasal
    Sameer, S. M.
    ELECTRONICS LETTERS, 2013, 49 (06) : 427 - 428
  • [16] THE EXACT CRAMER-RAO BOUND FOR GAUSSIAN AUTOREGRESSIVE PROCESSES
    PORAT, B
    FRIEDLANDER, B
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1987, 23 (04) : 537 - 542
  • [17] Cramer-Rao Bound for a Sparse Complex Model
    Florescu, Anisia
    Chouzenoux, Emilie
    Pesquet, Jean-Christophe
    Ciochina, Silviu
    2014 10TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS (COMM), 2014,
  • [18] Cramer-Rao bound for position and amplitude estimation of multiple pulses in Gaussian noise
    Gatherer, Alan
    Meng, Teresa H.-Y.
    IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1999, 46 (04): : 448 - 456
  • [19] The Cramer-Rao bound for position and amplitude estimation of multiple pulses in Gaussian noise
    Gatherer, A
    Meng, THY
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 1999, 46 (04) : 448 - 456
  • [20] THE EXACT CRAMER-RAO BOUND FOR GAUSSIAN AUTOREGRESSIVE PROCESSES
    FRIEDLANDER, B
    PORAT, B
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1989, 25 (01) : 3 - 8