The k-path vertex cover in Cartesian product graphs and complete bipartite graphs

被引:6
|
作者
Li, Zhao [1 ]
Zuo, Liancui [1 ]
机构
[1] Tianjin Normal Univ, Coll Math Sci, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
k-path vertex cover; Cartesian product; Strong product; Lexicographic product; Complete bipartite graph; APPROXIMATION ALGORITHM; INDEPENDENCE NUMBER; P-3; PROBLEM; DISSOCIATION NUMBER;
D O I
10.1016/j.amc.2018.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a graph G and a positive integer k, a subset S of vertices of G is called a k-path vertex cover if S intersects all paths of order k in G. The cardinality of a minimum k-path vertex cover is denoted by psi(k)(G), and called the k-path vertex cover number of G. In this paper, we study some Cartesian product graphs and give several estimations and the exact values of psi(k)(G). (c) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:69 / 79
页数:11
相关论文
共 50 条
  • [21] Complete graphs and complete bipartite graphs without rainbow path
    Li, Xihe
    Wang, Ligong
    Liu, Xiangxiang
    [J]. DISCRETE MATHEMATICS, 2019, 342 (07) : 2116 - 2126
  • [22] KOSZULNESS OF VERTEX COVER ALGEBRAS OF BIPARTITE GRAPHS
    Rinaldo, Giancarlo
    [J]. COMMUNICATIONS IN ALGEBRA, 2011, 39 (07) : 2249 - 2259
  • [23] The Cover Time of Cartesian Product Graphs
    Abdullah, Mohammed
    Cooper, Colin
    Radzik, Tomasz
    [J]. COMBINATORIAL ALGORITHMS, 2011, 6460 : 377 - 389
  • [24] Analyzing the 3-path Vertex Cover Problem in Planar Bipartite Graphs
    Jena, Sangram K.
    Subramani, K.
    [J]. THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2022, 2022, 13571 : 103 - 115
  • [25] Generating and counting unlabeled k-path graphs
    da Costa Pereira, Paulo Renato
    Garcia, Alex
    Markenzon, Lilian
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 164 : 297 - 303
  • [26] Path connectivity of line graphs and total graphs of complete bipartite graphs
    Zhu, Wen-Han
    Hao, Rong-Xia
    Feng, Yan-Quan
    Lee, Jaeun
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2023, 457
  • [27] On the Equitable Vertex Arboricity of Complete Bipartite Graphs
    Mao, Yaping
    Guo, Zhiwei
    Zhao, Haixing
    Ye, Chengfu
    [J]. UTILITAS MATHEMATICA, 2016, 99 : 403 - 411
  • [28] Total k-domination in Cartesian product of complete graphs
    Carballosa, Walter
    Wisby, Justin
    [J]. DISCRETE APPLIED MATHEMATICS, 2023, 337 : 25 - 41
  • [29] Complexity of the Maximum k-Path Vertex Cover Problem
    Miyano, Eiji
    Saitoh, Toshiki
    Uehara, Ryuhei
    Yagita, Tsuyoshi
    van der Zanden, Tom C.
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2020, E103A (10) : 1193 - 1201
  • [30] Complexity of the Maximum k-Path Vertex Cover Problem
    Miyano, Eiji
    Saitoh, Toshiki
    Uehara, Ryuhei
    Yagita, Tsuyoshi
    van der Zanden, Tom C.
    [J]. WALCOM: ALGORITHMS AND COMPUTATION, WALCOM 2018, 2018, 10755 : 240 - 251