A Bayesian Graphical Model for ChIP-Seq Data on Histone Modifications

被引:18
|
作者
Mitra, Riten [1 ]
Mueller, Peter [2 ]
Liang, Shoudan [3 ]
Yue, Lu [4 ]
Ji, Yuan [5 ]
机构
[1] Univ Texas Austin, ICES, Austin, TX 78705 USA
[2] Univ Texas Austin, Dept Math, Austin, TX 78705 USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Bioinformat & Computat Biol, Houston, TX 77030 USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Leukemia, Houston, TX 77030 USA
[5] NorthShore Univ HealthSyst, Ctr Clin & Res Informat, Evanston, IL 60091 USA
关键词
Autologistic regression; Epigenetics; Markov chain Monte Carlo; Markov random fields; Network model; Pathway dependence; CHROMATIN; METHYLATIONS; ACETYLATION; EXPRESSION; DOMAINS; MAP;
D O I
10.1080/01621459.2012.746058
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Histone modifications (HMs) are an important post-translational feature. Different types of HMs are believed to co-exist and co-regulate biological processes such as gene expression and, therefore, are intrinsically dependent on each other. We develop inference for this complex biological network of HMs based on a graphical model using ChIP-Seq data. A critical computational hurdle in the inference for the proposed graphical model is the evaluation of a normalization constant in an autologistic model that builds on the graphical model. We tackle the problem by Monte Carlo evaluation of ratios of normalization constants. We carry out a set of simulations to validate the proposed approach and to compare it with a standard approach using Bayesian networks. We report inference on HM dependence in a case study with ChIP-Seq data from a next generation sequencing experiment. An important feature of our approach is that we can report coherent probabilities and estimates related to any event or parameter of interest, including honest uncertainties. Posterior inference is obtained from a joint probability model on latent indicators for the recorded HMs. We illustrate this in the motivating case study. An R package including an implementation of posterior simulation in C is available from Riten Mitra upon request.
引用
收藏
页码:69 / 80
页数:12
相关论文
共 50 条
  • [1] A comparison of control samples for ChIP-seq of histone modifications
    Flensburg, Christoffer
    Kinkel, Sarah A.
    Keniry, Andrew
    Blewitt, Marnie E.
    Oshlack, Alicia
    [J]. FRONTIERS IN GENETICS, 2014, 5
  • [2] Exploring dynamic histone modifications in chondrogenesis using ChIP-seq
    Cheung, K.
    Young, D.
    [J]. INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, 2016, 97 (06) : A23 - A23
  • [3] BayesPeak: Bayesian analysis of ChIP-seq data
    Spyrou, Christiana
    Stark, Rory
    Lynch, Andy G.
    Tavare, Simon
    [J]. BMC BIOINFORMATICS, 2009, 10 : 299
  • [4] BayesPeak: Bayesian analysis of ChIP-seq data
    Christiana Spyrou
    Rory Stark
    Andy G Lynch
    Simon Tavaré
    [J]. BMC Bioinformatics, 10
  • [5] Integrative analysis of histone ChIP-seq and transcription data using Bayesian mixture models
    Klein, Hans-Ulrich
    Schaefer, Martin
    Porse, Bo T.
    Hasemann, Marie S.
    Ickstadt, Katja
    Dugas, Martin
    [J]. BIOINFORMATICS, 2014, 30 (08) : 1154 - 1162
  • [6] A fully Bayesian hidden Ising model for ChIP-seq data analysis
    Mo, Qianxing
    [J]. BIOSTATISTICS, 2012, 13 (01) : 113 - 128
  • [7] An optimized ChIP-Seq framework for profiling histone modifications in Chromochloris zofingiensis
    Strenkert, Daniela
    Mingay, Matthew
    Schmollinger, Stefan
    Chen, Cindy
    O'Malley, Ronan C.
    Merchant, Sabeeha S.
    [J]. PLANT DIRECT, 2022, 6 (03)
  • [8] jChIP: A graphical environment for exploratory ChIP-Seq data analysis
    Chojnowski K.
    Goryca K.
    Rubel T.
    Mikula M.
    [J]. BMC Research Notes, 7 (1)
  • [9] Nonparametric Tests for Differential Histone Enrichment with ChIP-Seq Data
    Wu, Qian
    Won, Kyoung-Jae
    Li, Hongzhe
    [J]. CANCER INFORMATICS, 2015, 14 : 11 - 22
  • [10] A Bayesian changepoint analysis of ChIP-Seq data of Lamin B
    Herrmann, S.
    Schwender, H.
    Ickstadt, K.
    Mueller, P.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2014, 1844 (01): : 138 - 144