A Bayesian Graphical Model for ChIP-Seq Data on Histone Modifications

被引:18
|
作者
Mitra, Riten [1 ]
Mueller, Peter [2 ]
Liang, Shoudan [3 ]
Yue, Lu [4 ]
Ji, Yuan [5 ]
机构
[1] Univ Texas Austin, ICES, Austin, TX 78705 USA
[2] Univ Texas Austin, Dept Math, Austin, TX 78705 USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Bioinformat & Computat Biol, Houston, TX 77030 USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Leukemia, Houston, TX 77030 USA
[5] NorthShore Univ HealthSyst, Ctr Clin & Res Informat, Evanston, IL 60091 USA
关键词
Autologistic regression; Epigenetics; Markov chain Monte Carlo; Markov random fields; Network model; Pathway dependence; CHROMATIN; METHYLATIONS; ACETYLATION; EXPRESSION; DOMAINS; MAP;
D O I
10.1080/01621459.2012.746058
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Histone modifications (HMs) are an important post-translational feature. Different types of HMs are believed to co-exist and co-regulate biological processes such as gene expression and, therefore, are intrinsically dependent on each other. We develop inference for this complex biological network of HMs based on a graphical model using ChIP-Seq data. A critical computational hurdle in the inference for the proposed graphical model is the evaluation of a normalization constant in an autologistic model that builds on the graphical model. We tackle the problem by Monte Carlo evaluation of ratios of normalization constants. We carry out a set of simulations to validate the proposed approach and to compare it with a standard approach using Bayesian networks. We report inference on HM dependence in a case study with ChIP-Seq data from a next generation sequencing experiment. An important feature of our approach is that we can report coherent probabilities and estimates related to any event or parameter of interest, including honest uncertainties. Posterior inference is obtained from a joint probability model on latent indicators for the recorded HMs. We illustrate this in the motivating case study. An R package including an implementation of posterior simulation in C is available from Riten Mitra upon request.
引用
收藏
页码:69 / 80
页数:12
相关论文
共 50 条
  • [31] MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets
    Zhen Shao
    Yijing Zhang
    Guo-Cheng Yuan
    Stuart H Orkin
    David J Waxman
    [J]. Genome Biology, 13
  • [32] MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets
    Shao, Zhen
    Zhang, Yijing
    Yuan, Guo-Cheng
    Orkin, Stuart H.
    Waxman, David J.
    [J]. GENOME BIOLOGY, 2012, 13 (03):
  • [33] Bioinformatics: Evaluation of histone modification ChIP-seq data sets; [Auswertung von Histonmodifikations-ChIP-Seq-Datensätzen: Bioinformatik]
    Helmuth J.
    Chung H.-R.
    [J]. BIOspektrum, 2016, 22 (6) : 568 - 570
  • [34] A Statistical Framework for the Analysis of ChIP-Seq Data
    Kuan, Pei Fen
    Chung, Dongjun
    Pan, Guangjin
    Thomson, James A.
    Stewart, Ron
    Keles, Suenduez
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (495) : 891 - 903
  • [35] A decade of ChIP-seq
    Marinov, Georgi K.
    [J]. BRIEFINGS IN FUNCTIONAL GENOMICS, 2018, 17 (02) : 77 - 79
  • [36] Hierarchical hidden Markov model with application to joint analysis of ChIP-chip and ChIP-seq data
    Choi, Hyungwon
    Nesvizhskii, Alexey I.
    Ghosh, Debashis
    Qin, Zhaohui S.
    [J]. BIOINFORMATICS, 2009, 25 (14) : 1715 - 1721
  • [37] Toward Breaking the Histone Code Bayesian Graphical Models for Histone Modifications
    Mitra, Riten
    Mueller, Peter
    Liang, Shoudan
    Xu, Yanxun
    Ji, Yuan
    [J]. CIRCULATION-CARDIOVASCULAR GENETICS, 2013, 6 (04) : 419 - 426
  • [38] Statistical Issues in the Analysis of ChIP-Seq and RNA-Seq Data
    Ghosh, Debashis
    Qin, Zhaohui S.
    [J]. GENES, 2010, 1 (02) : 317 - 334
  • [39] Joint modeling of ChIP-seq data via a Markov random field model
    Bao, Yanchun
    Vinciotti, Veronica
    Wit, Ernst
    't Hoen, Peter A. C.
    [J]. BIOSTATISTICS, 2014, 15 (02) : 296 - 310
  • [40] An integrated software system for analyzing ChIP-chip and ChIP-seq data
    Ji, Hongkai
    Jiang, Hui
    Ma, Wenxiu
    Johnson, David S.
    Myers, Richard M.
    Wong, Wing H.
    [J]. NATURE BIOTECHNOLOGY, 2008, 26 (11) : 1293 - 1300