A mixed iteration for nonnegative matrix factorizations

被引:3
|
作者
Soltuz, Stefan M. [1 ,2 ]
Rhoades, B. E. [3 ]
机构
[1] Dawson Coll, Dept Math, Montreal, PQ H3Z 1A4, Canada
[2] Tiberiu Popoviciu Inst Numer Anal, Cluj Napoca, Romania
[3] Indiana Univ, Dept Math, Bloomingtron, IN USA
关键词
Non-negative matrix factorization; Lee-Seung iteration; ALGORITHMS;
D O I
10.1016/j.amc.2013.03.124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that, under appropriate conditions, one can create a hybrid between two given iterations which can perform better than either of the original ones. This fact provides a freedom of choice. We also give numerical examples in which we compare our hybrid with the dedicated Lee-Seung iteration. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:9847 / 9855
页数:9
相关论文
共 50 条
  • [21] MINIMUM-VOLUME RANK-DEFICIENT NONNEGATIVE MATRIX FACTORIZATIONS
    Leplat, Valentin
    Ang, Andersen M. S.
    Gillis, Nicolas
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3402 - 3406
  • [22] Algorithms and Comparisons of Nonnegative Matrix Factorizations With Volume Regularization for Hyperspectral Unmixing
    Ang, Andersen Man Shun
    Gillis, Nicolas
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (12) : 4843 - 4853
  • [23] Novel Alternating Least Squares Algorithm for Nonnegative Matrix and Tensor Factorizations
    Anh Huy Phan
    Cichocki, Andrzej
    Zdunek, Rafal
    Thanh Vu Dinh
    [J]. NEURAL INFORMATION PROCESSING: THEORY AND ALGORITHMS, PT I, 2010, 6443 : 262 - +
  • [24] Accelerated stochastic multiplicative update with gradient averaging for nonnegative matrix factorizations
    Kasai, Hiroyuki
    [J]. 2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 2593 - 2597
  • [25] Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations
    Cichocki, Andrzej
    Phan, Anh-Huy
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2009, E92A (03) : 708 - 721
  • [26] Robust distribution-based nonnegative matrix factorizations for dimensionality reduction
    Peng, Xinjun
    Xu, Dong
    Chen, De
    [J]. INFORMATION SCIENCES, 2021, 552 : 244 - 260
  • [27] INVERSE ITERATION FOR CALCULATING SPECTRAL RADIUS OF A NONNEGATIVE IRREDUCIBLE MATRIX
    ELSNER, L
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 15 (03) : 235 - 242
  • [28] Q-matrix Extraction from Real Response Data Using Nonnegative Matrix Factorizations
    Casalino, Gabriella
    Castiello, Ciro
    Del Buono, Nicoletta
    Esposito, Flavia
    Mencar, Corrado
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2017, PT I, 2017, 10404 : 203 - 216
  • [29] COMPUTING NONNEGATIVE RANK FACTORIZATIONS
    CAMPBELL, SL
    POOLE, GD
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 35 (FEB) : 175 - 182
  • [30] FACTORIZATIONS OF NONNEGATIVE SYMMETRIC OPERATORS
    Arlinskii, Yury
    Kovalev, Yury
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2013, 19 (03): : 211 - 226