Iwasawa invariants of some non-cyclotomic Zp-extensions

被引:2
|
作者
Hubbard, David [1 ]
Washington, Lawrence C. [2 ]
机构
[1] 35 Holt Circle, Hamilton, NJ 08619 USA
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
Iwasawa theory; Anticyclotomic extension; Mu-invariant;
D O I
10.1016/j.jnt.2018.01.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Iwasawa showed that there are non-cyclotomic Z(p)-extensions with positive mu-invariant. We show that these, mu-invariants can be evaluated explicitly in many situations when p = 2 and p = 3. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:18 / 47
页数:30
相关论文
共 50 条
  • [11] Stabilization for Iwasawa modules in Zp-extensions
    Bandini, Andrea
    Caldarola, Fabio
    [J]. RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2016, 136 : 137 - 155
  • [12] Class numbers in cyclotomic Zp-extensions
    Miller, John C.
    [J]. JOURNAL OF NUMBER THEORY, 2015, 150 : 47 - 73
  • [13] ON IWASAWA'S CLASS NUMBER FORMULA FOR Zp ∝ Zp-EXTENSIONS
    Tateno, Sohei
    [J]. JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2019, 43 (01): : 77 - 99
  • [14] Construction of Zp-extensions with prescribed Iwasawa modules
    Ozaki, M
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2004, 56 (03) : 787 - 801
  • [15] Galois coinvariants of the unramified Iwasawa modules of multiple Zp-extensions
    Miura, Takashi
    Murakami, Kazuaki
    Okano, Keiji
    Otsuki, Rei
    [J]. ANNALES MATHEMATIQUES DU QUEBEC, 2021, 45 (02): : 407 - 431
  • [16] A REMARK ON p-CLASS NUMBERS IN CYCLOTOMIC Zp-EXTENSIONS
    Kim, Kwang-Seob
    [J]. HONAM MATHEMATICAL JOURNAL, 2022, 44 (01): : 146 - 147
  • [17] On a power integral bases problem over cyclotomic Zp-extensions
    Ichimura, H
    [J]. JOURNAL OF ALGEBRA, 2000, 234 (01) : 90 - 100
  • [18] On Tamely Ramified Iwasawa Modules for Zp-extensions of Imaginary Quadratic Fields
    Itoh, Tsuyoshi
    Takakura, Yu
    [J]. TOKYO JOURNAL OF MATHEMATICS, 2014, 37 (02) : 405 - 431
  • [19] On the Iwasawa asymptotic class number formula for Zpr (sic) Zp-extensions
    Liang, Dingli
    Lim, Meng Fai
    [J]. ACTA ARITHMETICA, 2019, 189 (02) : 191 - 208
  • [20] Indices of subfields of cyclotomic Zp-extensions and higher degree Fermat quotients
    Inoue, Yoko
    Ota, Kaori
    [J]. ACTA ARITHMETICA, 2015, 169 (02) : 101 - 114