Robust distributed control of quasilinear reaction-diffusion equations via infinite-dimensional sliding modes

被引:9
|
作者
Cristofaro, Andrea [1 ,2 ]
机构
[1] Univ Oslo, Fac Math & Nat Sci, Dept Technol Syst, N-2007 Kjeller, Norway
[2] Univ Camerino, Math Div, Sch Sci & Technol, I-62032 Camerino, Italy
关键词
Distributed-parameter systems; Reaction-diffusion equations; Sliding-mode control; OUTPUT REGULATION; ADAPTIVE-CONTROL; TRACKING CONTROL; BOUNDARY CONTROL; UNCERTAIN HEAT;
D O I
10.1016/j.automatica.2019.02.039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the problem of robust tracking control for quasilinear reaction-diffusion partial differential equations subject to external unknown perturbations. The considered class of equations is quite general, and includes classical equations such as the heat equation or the Fisher-KPP equation as special cases. Global practical stabilization of the tracking error system is established under mild conditions on the disturbance term using a regularized infinite-dimensional sliding-mode controller. Extensive simulations support and validate the theoretical results. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:165 / 172
页数:8
相关论文
共 50 条
  • [41] TWO-DIMENSIONAL REACTION-DIFFUSION EQUATIONS WITH MEMORY
    Conti, Monica
    Gatti, Stefania
    Grasselli, Maurizio
    Pata, Vittorino
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2010, 68 (04) : 607 - 643
  • [42] Bifurcations of one-dimensional reaction-diffusion equations
    Li, CP
    Chen, GR
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (05): : 1295 - 1306
  • [43] A decomposition method for quasilinear singularly perturbed parabolic equations in the reaction-diffusion case
    Tselishcheva, IV
    Shishkin, GI
    [J]. ANALYTICAL AND NUMERICAL METHODS FOR CONVECTION-DOMINATED AND SINGULARLY PERTURBED PROBLEMS, 2000, : 251 - 257
  • [44] Wavefronts for a global reaction-diffusion population model with infinite distributed delay
    Weng, Peixuan
    Xu, Zhiting
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) : 522 - 534
  • [45] Discrete infinite-dimensional type-K monotone dynamical systems and time-periodic reaction-diffusion systems
    Liang, X
    Jiang, JF
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 189 (01) : 318 - 354
  • [46] Non-Smooth Optimization for Robust Control of Infinite-Dimensional Systems
    Apkarian, Pierre
    Noll, Dominikus
    Ravanbod, Laleh
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2018, 26 (02) : 405 - 429
  • [47] Non-Smooth Optimization for Robust Control of Infinite-Dimensional Systems
    Pierre Apkarian
    Dominikus Noll
    Laleh Ravanbod
    [J]. Set-Valued and Variational Analysis, 2018, 26 : 405 - 429
  • [48] Optimal control of gas pipelines via infinite-dimensional analysis
    Durgut, I
    Leblebicioglu, K
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1996, 22 (09) : 867 - 879
  • [49] Smoothing effects and infinite time blowup for reaction-diffusion equations: An approach via Sobolev and Poincare inequalities
    Grillo, Gabriele
    Meglioli, Giulia
    Punzo, Fabio
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 151 : 99 - 131
  • [50] Control under constraints for multi-dimensional reaction-diffusion monostable and bistable equations
    Ruiz-Balet, Domenec
    Zuazua, Enrique
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 143 : 345 - 375