Robust distributed control of quasilinear reaction-diffusion equations via infinite-dimensional sliding modes

被引:9
|
作者
Cristofaro, Andrea [1 ,2 ]
机构
[1] Univ Oslo, Fac Math & Nat Sci, Dept Technol Syst, N-2007 Kjeller, Norway
[2] Univ Camerino, Math Div, Sch Sci & Technol, I-62032 Camerino, Italy
关键词
Distributed-parameter systems; Reaction-diffusion equations; Sliding-mode control; OUTPUT REGULATION; ADAPTIVE-CONTROL; TRACKING CONTROL; BOUNDARY CONTROL; UNCERTAIN HEAT;
D O I
10.1016/j.automatica.2019.02.039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the problem of robust tracking control for quasilinear reaction-diffusion partial differential equations subject to external unknown perturbations. The considered class of equations is quite general, and includes classical equations such as the heat equation or the Fisher-KPP equation as special cases. Global practical stabilization of the tracking error system is established under mild conditions on the disturbance term using a regularized infinite-dimensional sliding-mode controller. Extensive simulations support and validate the theoretical results. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:165 / 172
页数:8
相关论文
共 50 条
  • [21] Robust stabilization of infinite-dimensional systems using sliding-mode output feedback control
    Orlov, Y
    Lou, YM
    Christofides, PD
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2004, 77 (12) : 1115 - 1136
  • [22] ON ROBUST PI-CONTROL OF INFINITE-DIMENSIONAL SYSTEMS
    LOGEMANN, H
    ZWART, H
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (03) : 573 - 593
  • [23] IDENTIFICATION OF AN INFINITE-DIMENSIONAL PARAMETER FOR STOCHASTIC DIFFUSION-EQUATIONS
    AIHARA, SI
    SUNAHARA, Y
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (05) : 1062 - 1075
  • [24] Stability and Robust Stability of Stochastic Reaction-Diffusion Neural Networks With Infinite Discrete and Distributed Delays
    Sheng, Yin
    Zhang, Hao
    Zeng, Zhigang
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 50 (05): : 1721 - 1732
  • [25] A NOTE ON CONTROL OF ONE-DIMENSIONAL HETEROGENEOUS REACTION-DIFFUSION EQUATIONS
    Sonego, Maicon
    Roychowdhury, Raju
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, : 415 - 422
  • [26] PRINCIPLES OF SLIDING MODE CONTROL OF INFINITE-DIMENSIONAL DYNAMIC PLANTS
    ORLOV, IV
    UTKIN, VI
    [J]. DOKLADY AKADEMII NAUK SSSR, 1985, 283 (05): : 1116 - 1119
  • [27] Infinite-dimensional sliding mode observer analysis for a disturbed linear reaction-convection-diffusion model
    Mohet, Judicael
    Hastir, Anthony
    Dimassi, Habib
    Winkin, Joseph J.
    Vande Wouwer, Alain
    [J]. SYSTEMS & CONTROL LETTERS, 2023, 179
  • [28] A quasilinear reaction-diffusion system coupled via nonlocal sources
    Zheng, Sining
    Su, Han
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 180 (01) : 295 - 308
  • [29] Spatial ecology via reaction-diffusion equations
    Cox, Bill
    [J]. MATHEMATICAL GAZETTE, 2005, 89 (514): : 172 - 173
  • [30] Numerical approximation of distributed order reaction-diffusion equations
    Morgado, M. L.
    Rebelo, M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 275 : 216 - 227