A VLSI-Efficient Signed Magnitude Comparator for {2n-1, 2n,2n+1-1} RNS

被引:0
|
作者
Kumar, Sachin [1 ]
Chang, Chip-Hong [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
关键词
RESIDUE NUMBER SYSTEM; CHINESE REMAINDER THEOREM; ALGORITHM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Comparison of residue representations in signed Residue Number System (RNS) involves sign detection and magnitude comparison. Both are difficult operations in RNS. This paper proposes a new signed magnitude comparator for the three-moduli set RNS {2(n)-1, 2(n), 2(n+1)-1}. Two subrange identifiers are computed to simplify sign detection and accelerate the magnitude comparison without requiring full reverse conversion, large modulo adders or lookup tables. Synthesis results in 65 nm CMOS standard cell implementation show that it even outperforms the most efficient unsigned magnitude comparator for equally balanced special three-moduli set by significant margin in terms of area, delay and power consumption.
引用
收藏
页码:1966 / 1969
页数:4
相关论文
共 50 条
  • [31] A Unified {2n-1, 2n, 2n+1} RNS Scaler with Dual Scaling Constants
    Low, Jeremy Yung Shern
    Tay, Thian Fatt
    Chang, Chip-Hong
    2012 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS), 2012, : 296 - 299
  • [32] Efficient two-level reverse converters for the four-moduli set {2n-1, 2n-1, 2n-1-1, 2n+1-1}
    Obeidi Daghlavi, Mohammad
    Noorimehr, Mohammad Reza
    Esmaeildoust, Mohammad
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2021, 108 (01) : 75 - 87
  • [33] SPREADS AND PACKINGS FOR A CLASS OF ((2N + 1) (2N-1 - 1) + 1, 2N-1, 1)-DESIGNS
    BAKER, RD
    EBERT, GL
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1985, 40 (01) : 45 - 54
  • [34] An Improved RNS Reverse Converter for the {22n+1-1, 2n, 2n-1} Moduli Set
    Gbolagade, K. A.
    Chaves, R.
    Sousa, L.
    Cotofana, S. D.
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 2103 - 2106
  • [35] Low-Complexity Sign Detection Algorithm for RNS {2n-1, 2n, 2n+1}
    Xu, Minghe
    Ya, Ruohe
    Luo, Fei
    IEICE TRANSACTIONS ON ELECTRONICS, 2012, E95C (09): : 1552 - 1556
  • [36] Design of Reverse Converters for the New RNS Moduli Set {2n+1, 2n-1, 2n, 2n-1+1} (n odd)
    Patronik, Piotr
    Piestrak, Stanislaw J.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2014, 61 (12) : 3436 - 3449
  • [37] Area-Time-Power Efficient VLSI Design for Residue-to-Binary Converter based on Moduli Set (2n,2n+1-1,2n-1)
    Lin, Su-Hon
    Sheu, Ming-Hwa
    Wang, Chao-Hsiang
    Kuo, Yuan-Ching
    2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2008), VOLS 1-4, 2008, : 168 - +
  • [38] RNS Smith-Waterman Accelerator based on the moduli set 2n, 2n-1, 2n-1-1
    Mensah, Patrick Kwabena
    Bankas, Edem K.
    Iddrisu, Mohammed Muniru
    2018 IEEE 7TH INTERNATIONAL CONFERENCE ON ADAPTIVE SCIENCE & TECHNOLOGY (IEEE ICAST), 2018,
  • [39] On the Design of RNS Reverse Converters for the Four-Moduli Set {2n+1, 2n-1, 2n, 2n+1+1}
    Sousa, Leonel
    Antao, Samuel
    Chaves, Ricardo
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2013, 21 (10) : 1945 - 1949
  • [40] Residue-to-binary arithmetic converter for moduli set {2n-1,2n,2n+1,2n+1-1}
    Mathew, J
    Radhakrishnan, D
    Srikanthan, T
    PROCEEDINGS OF THE IEEE-EURASIP WORKSHOP ON NONLINEAR SIGNAL AND IMAGE PROCESSING (NSIP'99), 1999, : 190 - 193