Bayesian analysis of quantile regression for censored dynamic panel data

被引:32
|
作者
Kobayashi, Genya [1 ]
Kozumi, Hideo [1 ]
机构
[1] Kobe Univ, Grad Sch Business Adm, Kobe, Hyogo 6578501, Japan
关键词
Asymmetric Laplace distribution; Bayesian quantile regression; Censored dynamic panel; Gibbs sampler; Marginal likelihood; Monte Carlo EM algorithm; MAXIMUM-LIKELIHOOD-ESTIMATION; DATA MODELS; EFFICIENT ESTIMATION; DEPENDENT-VARIABLES; INITIAL CONDITIONS; INFERENCE; ERROR; ALGORITHM; MIXTURE; DEMAND;
D O I
10.1007/s00180-011-0263-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops a Bayesian approach to analyzing quantile regression models for censored dynamic panel data. We employ a likelihood-based approach using the asymmetric Laplace error distribution and introduce lagged observed responses into the conditional quantile function. We also deal with the initial conditions problem in dynamic panel data models by introducing correlated random effects into the model. For posterior inference, we propose a Gibbs sampling algorithm based on a location-scale mixture representation of the asymmetric Laplace distribution. It is shown that the mixture representation provides fully tractable conditional posterior densities and considerably simplifies existing estimation procedures for quantile regression models. In addition, we explain how the proposed Gibbs sampler can be utilized for the calculation of marginal likelihood and the modal estimation. Our approach is illustrated with real data on medical expenditures.
引用
收藏
页码:359 / 380
页数:22
相关论文
共 50 条
  • [41] Quantile Regression for Dynamic Panel Data Using Hausman–Taylor Instrumental Variables
    Li Tao
    Yuanjie Zhang
    Maozai Tian
    [J]. Computational Economics, 2019, 53 : 1033 - 1069
  • [42] Research on Quantile Regression Method for Longitudinal Interval-Censored Data Based on Bayesian Double Penalty
    Zhao, Ke
    Shu, Ting
    Hu, Chaozhu
    Luo, Youxi
    [J]. MATHEMATICS, 2024, 12 (12)
  • [43] Bayesian Analysis of Composite Quantile Regression
    Alhamzawi R.
    [J]. Statistics in Biosciences, 2016, 8 (2) : 358 - 373
  • [44] Distributed Censored Quantile Regression
    Sit, Tony
    Xing, Yue
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1685 - 1697
  • [45] Envelopes for censored quantile regression
    Zhao, Yue
    Van Keilegom, Ingrid
    Ding, Shanshan
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (04) : 1562 - 1585
  • [46] Censored quantile regression redux
    Koenker, Roger
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2008, 27 (06): : 1 - 25
  • [47] Bootstrap Inference for Panel Data Quantile Regression
    Galvao, Antonio F.
    Parker, Thomas
    Xiao, Zhijie
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (02) : 628 - 639
  • [48] Weighted censored quantile regression
    Vasudevan, Chithran
    Variyath, Asokan Mulayath
    Fan, Zhaozhi
    [J]. SURVEY METHODOLOGY, 2019, 45 (01) : 127 - 144
  • [49] Censored Quantile Regression Forest
    Li, Alexander Hanbo
    Bradic, Jelena
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2109 - 2118
  • [50] QUANTILE CALCULUS AND CENSORED REGRESSION
    Huang, Yijian
    [J]. ANNALS OF STATISTICS, 2010, 38 (03): : 1607 - 1637