A study on the effect of CT imaging acquisition parameters on lung nodule image interpretation

被引:1
|
作者
Yu, Shirley J. [1 ]
Wantroba, Joseph S. [2 ]
Raicu, Daniela S. [2 ]
Furst, Jacob D. [2 ]
Channin, David S. [3 ]
Armato, Samuel G., III [4 ]
机构
[1] Univ So Calif, Los Angeles, CA 90089 USA
[2] Depaul Univ, Chicago, IL 60604 USA
[3] Northwestern Univ, Evanston, IL 60208 USA
[4] Univ Chicago, Chicago, IL 60637 USA
关键词
Computed Tomography Imaging; Acquisition Parameter; Semantic Mapping; Lung Nodule; Interpretation; PULMONARY NODULES; SEGMENTATION;
D O I
10.1117/12.813695
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Most Computer-Aided Diagnosis (CAD) research studies are performed using a single type of Computer Tomography (CT) scanner and therefore, do not take into account the effect of differences in the imaging acquisition scanner parameters. In this paper, we present a study on the effect of the CT parameters on the low-level image features automatically extracted from CT images for lung nodule interpretation. The study is an extension of our previous study where we showed that image features can be used to predict semantic characteristics of lung nodules such as margin, lobulation, spiculation, and texture. Using the Lung Image Data Consortium (LIDC) dataset, we propose to integrate the imaging acquisition parameters with the low-level image features to generate classification models for the nodules' semantic characteristics. Our preliminary results identify seven CT parameters (convolution kernel, reconstruction diameter, exposure, nodule location along the z-axis, distance source to patient, slice thickness, and kVp) as influential in producing classification rules for the LIDC semantic characteristics. Further post-processing analysis, which included running box plots and binning of values, identified four CT parameters: distance source to patient, kVp, nodule location, and rescale intercept. The identification of these parameters will create the premises to normalize the image features across different scanners and, in the long run, generate automatic rules for lung nodules interpretation independently of the CT scanner types.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] The Effect of CT Scan Parameters on the Measurement of CT Radiomic Features: A Lung Nodule Phantom Study
    Kim, Young Jae
    Lee, Hyun-Ju
    Kim, Kwang Gi
    Lee, Seung Hyun
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2019, 2019
  • [2] Radiomic Features of Lung Cancer and Their Dependency On CT Image Acquisition Parameters
    Liang, G.
    Zhang, J.
    Brooks, M.
    Howard, J.
    Chen, J.
    MEDICAL PHYSICS, 2017, 44 (06) : 3024 - 3024
  • [3] Robustness of Lung Nodule Classification by Radiomic Texture Feature Across CT Acquisition and Reconstruction Parameters
    Emaminejad, N.
    Hoffman, J.
    Wahi-Anwar, M.
    Kim, G.
    Brown, M.
    McNitt-Gray, M.
    MEDICAL PHYSICS, 2018, 45 (06) : E514 - E515
  • [4] Effect of CT acquisition parameters of spiral CT on image quality and radiation dose
    Manmadhachary, A.
    Kumar, Y. Ravi
    Krishnanand, L.
    MEASUREMENT, 2017, 103 : 18 - 26
  • [5] The Role of Key Image Notes in CT Imaging Study Interpretation
    Fan, Shu-Feng
    Xu, Zhe
    He, Hai-Qing
    Ding, Jian-Rong
    Teng, Gao-Jun
    JOURNAL OF DIGITAL IMAGING, 2011, 24 (02) : 366 - 372
  • [6] The Role of Key Image Notes in CT Imaging Study Interpretation
    Shu-Feng Fan
    Zhe Xu
    Hai-Qing He
    Jian-Rong Ding
    Gao-Jun Teng
    Journal of Digital Imaging, 2011, 24 : 366 - 372
  • [7] CT coronary angiography: indications, image acquisition, and interpretation
    Schoepf, U. J.
    Thilo, C.
    Fernandez, M. J.
    Costello, P.
    RADIOLOGIA, 2008, 50 (02): : 113 - 130
  • [8] Effect of CT image compression on computer-assisted lung nodule volume measurement
    Ko, LP
    Chang, J
    Bomsztyk, E
    Babb, JS
    Naidich, DP
    Rusinek, H
    RADIOLOGY, 2005, 237 (01) : 83 - 88
  • [9] The effect of image reconstruction kernel on automated lung nodule detection in thoracic CT images
    Altman, MB
    Armato, SG
    La Riviere, PJ
    RADIOLOGY, 2002, 225 : 255 - 255
  • [10] The effect of lung volume on nodule size on CT
    Petkovska, Iva
    Brown, Matthew S.
    Goldin, Jonathan G.
    Kim, Hyun J.
    McNitt-Gray, Michael F.
    Abtin, Fereidoun G.
    Ghurabi, Raffi J.
    Aberle, Denise R.
    ACADEMIC RADIOLOGY, 2007, 14 (04) : 476 - 485