A study on the effect of CT imaging acquisition parameters on lung nodule image interpretation

被引:1
|
作者
Yu, Shirley J. [1 ]
Wantroba, Joseph S. [2 ]
Raicu, Daniela S. [2 ]
Furst, Jacob D. [2 ]
Channin, David S. [3 ]
Armato, Samuel G., III [4 ]
机构
[1] Univ So Calif, Los Angeles, CA 90089 USA
[2] Depaul Univ, Chicago, IL 60604 USA
[3] Northwestern Univ, Evanston, IL 60208 USA
[4] Univ Chicago, Chicago, IL 60637 USA
来源
MEDICAL IMAGING 2009: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT | 2009年 / 7263卷
关键词
Computed Tomography Imaging; Acquisition Parameter; Semantic Mapping; Lung Nodule; Interpretation; PULMONARY NODULES; SEGMENTATION;
D O I
10.1117/12.813695
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Most Computer-Aided Diagnosis (CAD) research studies are performed using a single type of Computer Tomography (CT) scanner and therefore, do not take into account the effect of differences in the imaging acquisition scanner parameters. In this paper, we present a study on the effect of the CT parameters on the low-level image features automatically extracted from CT images for lung nodule interpretation. The study is an extension of our previous study where we showed that image features can be used to predict semantic characteristics of lung nodules such as margin, lobulation, spiculation, and texture. Using the Lung Image Data Consortium (LIDC) dataset, we propose to integrate the imaging acquisition parameters with the low-level image features to generate classification models for the nodules' semantic characteristics. Our preliminary results identify seven CT parameters (convolution kernel, reconstruction diameter, exposure, nodule location along the z-axis, distance source to patient, slice thickness, and kVp) as influential in producing classification rules for the LIDC semantic characteristics. Further post-processing analysis, which included running box plots and binning of values, identified four CT parameters: distance source to patient, kVp, nodule location, and rescale intercept. The identification of these parameters will create the premises to normalize the image features across different scanners and, in the long run, generate automatic rules for lung nodules interpretation independently of the CT scanner types.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Analysis of the Influence of CT Imaging Conditions on the CT Image Features of Pulmonary Nodule Phantoms
    Li, Jing
    Zhong, Daidi
    Wang, Shuo
    Tao, Chunjing
    Wang, Hao
    IEEE ACCESS, 2025, 13 : 35101 - 35112
  • [22] CT lung nodule enhancement study: Prospective findings
    Swenson, SJ
    Brown, LR
    Colby, TV
    Weaver, AL
    Midthun, DE
    RADIOLOGY, 1996, 201 : 182 - 182
  • [23] The Effect of Reconstruction and Acquisition Parameters for GRAPPA-Based Parallel Imaging on the Image Quality
    Bauer, S.
    Markl, M.
    Honal, M.
    Jung, B. A.
    MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (02) : 402 - 409
  • [24] CT-Based Myocardial Perfusion Imaging-Practical Considerations: Acquisition, Image Analysis, Interpretation, and Challenges
    Mehra, Vishal C.
    Ambrose, Marietta
    Valdiviezo-Schlomp, Carolina
    Schuleri, Karl H.
    Lardo, Albert C.
    Lima, Joao A. C.
    George, Richard T.
    JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH, 2011, 4 (04) : 437 - 448
  • [25] CT-Based Myocardial Perfusion Imaging-Practical Considerations: Acquisition, Image Analysis, Interpretation, and Challenges
    Vishal C. Mehra
    Marietta Ambrose
    Carolina Valdiviezo-Schlomp
    Karl H. Schuleri
    Albert C. Lardo
    Joao A. C. Lima
    Richard T. George
    Journal of Cardiovascular Translational Research, 2011, 4 : 437 - 448
  • [26] Effects of acquisition time and reconstruction algorithm on image quality, quantitative parameters, and clinical interpretation of myocardial perfusion imaging
    Lotte H. Enevoldsen
    Changez A. K. Menashi
    Ulrik B. Andersen
    Lars T. Jensen
    Otto M. Henriksen
    Journal of Nuclear Cardiology, 2013, 20 : 1086 - 1092
  • [27] Effects of acquisition time and reconstruction algorithm on image quality, quantitative parameters, and clinical interpretation of myocardial perfusion imaging
    Enevoldsen, Lotte H.
    Menashi, Changez A. K.
    Andersen, Ulrik B.
    Jensen, Lars T.
    Henriksen, Otto M.
    JOURNAL OF NUCLEAR CARDIOLOGY, 2013, 20 (06) : 1086 - 1092
  • [28] Single Centre Feasibility Study Exploring The Reproducibility Of Lung Nodule Volumetry In PET/CT Compared To Conventional CT Imaging
    Zhou, C.
    Hare, S.
    Parthipun, A.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 : S513 - S513
  • [29] Machine learning to predict lung nodule biopsy method using CT image features: A pilot study
    Sumathipala, Yohan
    Shafiq, Majid
    Bongen, Erika
    Brinton, Connor
    Paik, David
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 71 : 1 - 8
  • [30] Accuracy Study on Deep Learning-Based CT Image Analysis for Lung Nodule Detection and Classification
    Cheng, Xiyue
    Li, Jinyu
    Mi, Mengqi
    Wang, Hao
    Wang, Jianjun
    Su, Peng
    TRAITEMENT DU SIGNAL, 2024, 41 (02) : 891 - 899