Epidemic Threshold in Continuous-Time Evolving Networks

被引:56
|
作者
Valdano, Eugenio [1 ,4 ]
Fiorentin, Michele Re [2 ]
Poletto, Chiara [1 ]
Colizza, Vittoria [1 ,3 ]
机构
[1] Sorbonne Univ, IPLESP, INSERM, F-75012 Paris, France
[2] Ist Italiano Tecnol, Ctr Sustainable Future Technol, CSFT PoliTo, Corso Trento 21, I-10129 Turin, Italy
[3] ISI Fdn, I-10126 Turin, Italy
[4] Univ Rovira & Virgili, Dept Engn Informat & Matemat, E-43007 Tarragona, Spain
关键词
DYNAMICS; DISEASE; SPREAD;
D O I
10.1103/PhysRevLett.120.068302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Current understanding of the critical outbreak condition on temporal networks relies on approximations (time scale separation, discretization) that may bias the results. We propose a theoretical framework to compute the epidemic threshold in continuous time through the infection propagator approach. We introduce the weak commutation condition allowing the interpretation of annealed networks, activity-driven networks, and time scale separation into one formalism. Our work provides a coherent connection between discrete and continuous time representations applicable to realistic scenarios.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] On stability of nonlinear continuous-time neural networks with delays
    Lu, HT
    [J]. NEURAL NETWORKS, 2000, 13 (10) : 1135 - 1143
  • [42] On the Continuous-time and Discrete-Time Versions of an Alternative Epidemic Model of the SIR Class
    Costa Jr, Jorge A.
    Martinez, Amanda C.
    Geromel, Jose C.
    [J]. JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2022, 33 (01) : 38 - 48
  • [43] On optimization of continuous-time Markov networks in distributed computing
    Alain Bui
    [J]. Journal of Global Optimization, 1999, 15 : 299 - 314
  • [44] INFLUENCE PREDICTION FOR CONTINUOUS-TIME INFORMATION PROPAGATION ON NETWORKS
    Chow, Shui-Nee
    Ye, Xiaojing
    Zha, Hongyuan
    Zhou, Haomin
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2018, 13 (04) : 567 - 583
  • [45] Reconciling Privacy and Utility in Continuous-Time Diffusion Networks
    Backes, Michael
    Gomez-Rodriguez, Manuel
    Manoharan, Praveen
    Surma, Bartlomiej
    [J]. 2017 IEEE 30TH COMPUTER SECURITY FOUNDATIONS SYMPOSIUM (CSF), 2017, : 292 - 304
  • [46] Closed-form continuous-time neural networks
    Ramin Hasani
    Mathias Lechner
    Alexander Amini
    Lucas Liebenwein
    Aaron Ray
    Max Tschaikowski
    Gerald Teschl
    Daniela Rus
    [J]. Nature Machine Intelligence, 2022, 4 : 992 - 1003
  • [47] Influence Estimation and Maximization in Continuous-Time Diffusion Networks
    Gomez-Rodriguez, Manuel
    Song, Le
    Du, Nan
    Zha, Hongyuan
    Schoelkopf, Bernhard
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2016, 34 (02)
  • [48] CONTINUOUS-TIME DYNAMICS OF ASYMMETRICALLY DILUTED NEURAL NETWORKS
    KREE, R
    ZIPPELIUS, A
    [J]. PHYSICAL REVIEW A, 1987, 36 (09): : 4421 - 4427
  • [49] Consensus of Quantum Networks with Continuous-time Markovian Dynamics
    Shi, Guodong
    Dong, Daoyi
    Petersen, Ian R.
    Johansson, Karl Henrik
    [J]. 2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 307 - 312
  • [50] Resilient Continuous-Time Consensus in Fractional Robust Networks
    LeBlanc, Heath J.
    Zhang, Haotian
    Sundaram, Shreyas
    Koutsoukos, Xenofon
    [J]. 2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 1237 - 1242